Mercurial > hg > Gears > GearsAgda
changeset 543:1595dd84fc3e
fix use SingleLinkedStack
author | ryokka |
---|---|
date | Thu, 11 Jan 2018 17:53:03 +0900 |
parents | ee65e69c9b62 |
children | 4f692df9b3db |
files | RedBlackTree.agda redBlackTreeTest.agda |
diffstat | 2 files changed, 53 insertions(+), 53 deletions(-) [+] |
line wrap: on
line diff
--- a/RedBlackTree.agda Thu Jan 11 17:38:13 2018 +0900 +++ b/RedBlackTree.agda Thu Jan 11 17:53:03 2018 +0900 @@ -38,25 +38,25 @@ color : Color {n} open Node -record RedBlackTree {n m : Level } {t : Set m} (a k si : Set n) : Set (m Level.⊔ n) where +record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.⊔ n) where field root : Maybe (Node a k) - nodeStack : Stack {n} {m} (Node a k) {t} si + nodeStack : SingleLinkedStack (Node a k) compare : k -> k -> CompareResult {n} open RedBlackTree -open Stack +open SingleLinkedStack -- -- put new node at parent node, and rebuild tree to the top -- {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html -replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -replaceNode {n} {m} {t} {a} {k} {si} tree s n0 next = popStack s ( +replaceNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s ( \s parent -> replaceNode1 s parent) where - replaceNode1 : Stack (Node a k) si -> Maybe ( Node a k ) -> t + replaceNode1 : SingleLinkedStack (Node a k) -> Maybe ( Node a k ) -> t replaceNode1 s Nothing = next ( record tree { root = Just (record n0 { color = Black}) } ) replaceNode1 s (Just n1) with compare tree (key n1) (key n0) ... | EQ = next tree @@ -64,13 +64,13 @@ ... | LT = replaceNode tree s ( record n1 { right = Just n0 } ) next -rotateRight : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> - (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t -rotateRight {n} {m} {t} {a} {k} {si} tree s n0 parent rotateNext = getStack s (\ s n0 -> rotateRight1 tree s n0 parent rotateNext) +rotateRight : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t +rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateRight1 tree s n0 parent rotateNext) where - rotateRight1 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> - (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t - rotateRight1 {n} {m} {t} {a} {k} {si} tree s n0 parent rotateNext with n0 + rotateRight1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t + rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 ... | Nothing = rotateNext tree s Nothing n0 ... | Just n1 with parent ... | Nothing = rotateNext tree s (Just n1 ) n0 @@ -81,13 +81,13 @@ ... | _ = rotateNext tree s (Just n1) parent -rotateLeft : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> - (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t -rotateLeft {n} {m} {t} {a} {k} {si} tree s n0 parent rotateNext = getStack s (\ s n0 -> rotateLeft1 tree s n0 parent rotateNext) +rotateLeft : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t +rotateLeft {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateLeft1 tree s n0 parent rotateNext) where - rotateLeft1 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> - (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t - rotateLeft1 {n} {m} {t} {a} {k} {si} tree s n0 parent rotateNext with n0 + rotateLeft1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t + rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 ... | Nothing = rotateNext tree s Nothing n0 ... | Just n1 with parent ... | Nothing = rotateNext tree s (Just n1) Nothing @@ -98,11 +98,11 @@ ... | _ = rotateNext tree s (Just n1) parent {-# TERMINATING #-} -insertCase5 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase5 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = pop2Stack s (\ s parent grandParent -> insertCase51 tree s n0 parent grandParent next) +insertCase5 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent -> insertCase51 tree s n0 parent grandParent next) where - insertCase51 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t - insertCase51 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next with n0 + insertCase51 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> (RedBlackTree {n} {m} {t} a k -> t) -> t + insertCase51 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with n0 ... | Nothing = next tree ... | Just n1 with parent | grandParent ... | Nothing | _ = next tree @@ -117,23 +117,23 @@ ... | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next) -insertCase4 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase4 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next +insertCase4 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with (right parent) | (left grandParent) ... | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next ... | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next ... | Just rightParent | Just leftGrandParent with compare tree (key n0) (key rightParent) | compare tree (key parent) (key leftGrandParent) -... | EQ | EQ = popStack s (\ s n1 -> rotateLeft tree s (left n0) (Just grandParent) +... | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateLeft tree s (left n0) (Just grandParent) (\ tree s n0 parent -> insertCase5 tree s n0 rightParent grandParent next)) ... | _ | _ = insertCase41 tree s n0 parent grandParent next where - insertCase41 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t - insertCase41 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next + insertCase41 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t + insertCase41 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with (left parent) | (right grandParent) ... | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next ... | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next ... | Just leftParent | Just rightGrandParent with compare tree (key n0) (key leftParent) | compare tree (key parent) (key rightGrandParent) - ... | EQ | EQ = popStack s (\ s n1 -> rotateRight tree s (right n0) (Just grandParent) + ... | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateRight tree s (right n0) (Just grandParent) (\ tree s n0 parent -> insertCase5 tree s n0 leftParent grandParent next)) ... | _ | _ = insertCase5 tree s (Just n0) parent grandParent next @@ -141,22 +141,22 @@ colorNode old c = record old { color = c } {-# TERMINATING #-} -insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertNode {n} {m} {t} {a} {k} {si} tree s n0 next = get2Stack s (insertCase1 n0) +insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertNode {n} {m} {t} {a} {k} tree s n0 next = get2SingleLinkedStack s (insertCase1 n0) where - insertCase1 : Node a k -> Stack (Node a k) si -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion + insertCase1 : Node a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html - insertCase3 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t + insertCase3 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t insertCase3 s n0 parent grandParent with left grandParent | right grandParent ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) ... | EQ = insertCase4 tree s n0 parent grandParent next ... | _ with color uncle - ... | Red = pop2Stack s ( \s p0 p1 -> insertCase1 ( + ... | Red = pop2SingleLinkedStack s ( \s p0 p1 -> insertCase1 ( record grandParent { color = Red ; left = Just ( record parent { color = Black } ) ; right = Just ( record uncle { color = Black } ) }) s p0 p1 ) ... | Black = insertCase4 tree s n0 parent grandParent next - insertCase2 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t + insertCase2 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t insertCase2 s n0 parent grandParent with color parent ... | Black = replaceNode tree s n0 next ... | Red = insertCase3 s n0 parent grandParent @@ -168,15 +168,15 @@ ---- -- find node potition to insert or to delete, the pass will be in the stack -- -findNode : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t -findNode {n} {m} {a} {k} {si} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) +findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> t) -> t +findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s -> findNode1 s n1) where - findNode2 : Stack (Node a k) si -> (Maybe (Node a k)) -> t + findNode2 : SingleLinkedStack (Node a k) -> (Maybe (Node a k)) -> t findNode2 s Nothing = next tree s n0 findNode2 s (Just n) = findNode tree s n0 n next - findNode1 : Stack (Node a k) si -> (Node a k) -> t + findNode1 : SingleLinkedStack (Node a k) -> (Node a k) -> t findNode1 s n1 with (compare tree (key n0) (key n1)) - ... | EQ = popStack s ( \s _ -> next tree s (record n1 { key = key n1 ; value = value n1 } ) ) + ... | EQ = popSingleLinkedStack s ( \s _ -> next tree s (record n1 { key = key n1 ; value = value n1 } ) ) ... | GT = findNode2 s (right n1) ... | LT = findNode2 s (left n1) @@ -190,13 +190,13 @@ color = Red } -putRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -putRedBlackTree {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) +putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> a -> (RedBlackTree {n} {m} {t} a k -> t) -> t +putRedBlackTree {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) -... | Just n2 = clearStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next)) +... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next)) -getRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> (RedBlackTree {n} {m} {t} a k si -> (Maybe (Node a k)) -> t) -> t -getRedBlackTree {_} {_} {a} {k} {_} {t} tree k1 cs = checkNode (root tree) +getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> (RedBlackTree {n} {m} {t} a k -> (Maybe (Node a k)) -> t) -> t +getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree) where search : Node a k -> t checkNode : Maybe (Node a k) -> t @@ -209,10 +209,10 @@ open import Data.Nat hiding (compare) -createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ ( SingleLinkedStack (Node a ℕ ) ) +createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ createEmptyRedBlackTreeℕ {m} a {t} = record { root = Nothing - ; nodeStack = createSingleLinkedStack + ; nodeStack = emptySingleLinkedStack ; compare = compare1 } where compare1 : ℕ → ℕ → CompareResult {Level.zero}
--- a/redBlackTreeTest.agda Thu Jan 11 17:38:13 2018 +0900 +++ b/redBlackTreeTest.agda Thu Jan 11 17:53:03 2018 +0900 @@ -13,10 +13,10 @@ -- tests -putTree1 : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -putTree1 {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) +putTree1 : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> a -> (RedBlackTree {n} {m} {t} a k -> t) -> t +putTree1 {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) -... | Just n2 = clearStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n1 next)) +... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n1 next)) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core @@ -41,7 +41,7 @@ test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1 $ \t -> putTree1 t 2 2 $ \t -> putTree1 t 3 3 - $ \t -> putTree1 t 4 4 + $ \t -> putTree1 t 4 4 $ \t -> getRedBlackTree t 4 $ \t x -> check1 x 4 ≡ True test3 = refl @@ -60,7 +60,7 @@ -- test5 : Maybe (Node ℕ ℕ) test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4 $ \t -> putTree1 t 6 6 - $ \t0 -> clearStack (nodeStack t0) + $ \t0 -> clearSingleLinkedStack (nodeStack t0) $ \s -> findNode1 t0 s (leafNode 3 3) ( root t0 ) $ \t1 s n1 -> replaceNode t1 s n1 $ \t -> getRedBlackTree t 3 @@ -68,7 +68,7 @@ -- $ \t x -> n1 $ \t x -> root t where - findNode1 : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t + findNode1 : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> t) -> t findNode1 t s n1 Nothing next = next t s n1 findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next @@ -81,7 +81,7 @@ test7 : Maybe (Node ℕ ℕ) -test7 = clearStack (nodeStack tree2) (\ s -> replaceNode tree2 s n2 (\ t -> root t)) +test7 = clearSingleLinkedStack (nodeStack tree2) (\ s -> replaceNode tree2 s n2 (\ t -> root t)) where tree2 = createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)} k1 = 1