Mercurial > hg > Gears > GearsAgda
changeset 768:1bb96bc9eb45
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 May 2023 13:57:47 +0900 |
parents | 9cdf272ca38c |
children | ce0d41a84c2b |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 1 insertions(+), 30 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Sun May 07 13:36:39 2023 +0900 +++ b/hoareBinaryTree1.agda Sun May 07 13:57:47 2023 +0900 @@ -809,36 +809,7 @@ → (rr : bt (Color ∧ A)) → {dr : ℕ} → RBtreeInvariant repl dr → rr ≡ repl → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key tree to stack ) → stack ≡ tree ∷ to ∷ [] → t - insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node k2 ⟪ Black , v2 ⟫ t1 t2)) (rb-right-red x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) leaf) (rb-left-red x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) (rb-node-red x₁ x₂ d ro ro₁) refl rr rbi eqr (s-right x s-nil) refl = exit rot1 repl1 ? ins13 ins12 where - rot1 : bt (Color ∧ A) - rot1 = node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4) - repl1 : bt (Color ∧ A) - repl1 = node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) repl - ins12 : replacedRBTree key value (child-replaced key rot1) repl1 - ins12 = ? - ins13 : rotatedTree (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) rot1 - ins13 = rr-node - -- -subst (λ k → RBtreeInvariant k d ) ? (rb-node-red ? ? d ro (subst₂ (λ j k → RBtreeInvariant j k) ? ? rbir )) - - -- exit (node k1 ⟪ Red , v1 ⟫ t1 rot) (node k1 ⟪ Black , v1 ⟫ ? ?) (rb-node-black ? ? ? ?) - -- (subst₂ (λ j k → rotatedTree j k ) eq ? (rr-right ? rr-node rr-node roti)) - -- (subst (λ k → replacedRBTree key value ? ?) ? (r-right ? ri)) - -- k1 < key - -- ⟪ red , k1 ⟫ - -- t1 tree → rot → repl - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq rr rbi eqr (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ d1 ro ro₁) eq rr rbi eqr (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node _ ⟪ Black , _ ⟫ _ _)) (rb-right-red x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) leaf) (rb-left-red x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) (node _ ⟪ Black , _ ⟫ _ _)) (rb-node-red x₁ x₂ d1 ro ro₁) eq rr rbi eqr (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq rr rbi eqr (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ d1 ro ro₁) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 = ? -- exit rot repl rbir ? ? ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg)