Mercurial > hg > Gears > GearsAgda
changeset 703:23e0b9df7896
embedding invariant extentiion
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Dec 2021 14:50:04 +0900 |
parents | 5959f7aa0960 |
children | aad148b5037d |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 34 insertions(+), 50 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Dec 05 11:46:20 2021 +0900 +++ b/hoareBinaryTree.agda Sun Dec 05 14:50:04 2021 +0900 @@ -585,23 +585,23 @@ top-value leaf = nothing top-value (node key value tree tree₁) = just value -record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where +record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : ℕ → bt A → List (bt A) → Set n) : Set n where field tree0 : bt A ti0 : treeInvariant tree0 ti : treeInvariant tree si : stackInvariant key tree tree0 stack - ci : C tree stack -- data continuation + ci : C key tree stack -- data continuation -record findExt {n : Level} {A : Set n} (C : bt A → List (bt A) → Set n) : Set (Level.suc n) where +record findExt {n : Level} {A : Set n} (key : ℕ) (C : ℕ → bt A → List (bt A) → Set n) : Set (Level.suc n) where field - c1 : {key key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A} - → findPR key (node key₁ v1 tree tree₁) st C → key < key₁ → C tree (tree ∷ st) - c2 : {key key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A} - → findPR key (node key₁ v1 tree tree₁) st C → key > key₁ → C tree₁ (tree₁ ∷ st) + c1 : {key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A} + → findPR key (node key₁ v1 tree tree₁) st C → key < key₁ → C key tree (tree ∷ st) + c2 : {key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A} + → findPR key (node key₁ v1 tree tree₁) st C → key > key₁ → C key tree₁ (tree₁ ∷ st) findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → {C : bt A → List (bt A) → Set n } → findPR key tree stack C → findExt C + → {C : ℕ → bt A → List (bt A) → Set n } → findPR key tree stack C → findExt key C → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack C → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack C → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t @@ -619,9 +619,9 @@ insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t insertTreePP {n} {m} {A} {t} tree key value P0 exit = - TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ _ _ → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫ + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ _ _ _ → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫ record { tree0 = tree ; ti = P0 ; ti0 = P0 ;si = s-single ; ci = lift tt } - $ λ p P loop → findPP key (proj1 p) (proj2 p) P record { c1 = λ _ _ → lift tt ; c2 = λ _ _ → lift tt } (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) + $ λ p P loop → findPP key (proj1 p) (proj2 p) P record { c1 = λ _ _ → lift tt ; c2 = λ _ _ → lift tt } (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) $ λ t s P C → replaceNodeP key value t C (findPR.ti P) $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A ) {λ p → replacePR key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) (λ _ _ _ → Lift n ⊤ ) } @@ -629,51 +629,35 @@ $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) P1 (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit -record findPC {n : Level} {A : Set n} (key1 : ℕ) (value : A) (tree : bt A ) (stack : List (bt A)) : Set n where +record findPC {n : Level} {A : Set n} (value : A) (key1 : ℕ) (tree : bt A ) (stack : List (bt A)) : Set n where field tree1 : bt A ci : replacedTree key1 value tree1 tree -findPPC : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) - → findPR key tree stack (findPC key value ) - → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC key value ) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC key value ) - → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t -findPPC key value leaf st Pre _ exit = exit leaf st Pre (case1 refl) -findPPC key value (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ -findPPC key value n st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) -findPPC {n} {_} {A} key value (node key₁ v1 tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st) - record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre) ; si = s-left a (findPR.si Pre) - ; ci = findP2 } depth-1< where - findP2 : findPC key value tree (tree ∷ st) - findP2 with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect findPC.tree1 (findPR.ci Pre) - findP2 | r-node | leaf | _ = ⊥-elim ( nat-≤> a ≤-refl ) - findP2 | r-node | node key value t t₁ | _ = ⊥-elim ( nat-≤> a ≤-refl ) - findP2 | (r-right x ri) | t | _ = ⊥-elim (nat-<> x a) - findP2 | (r-left x ri) | node key value t t₁ | record { eq = refl } = record { tree1 = t ; ci = ri } - findP2 | r-left x ri | leaf | record { eq = () } - findP2 | r-leaf | leaf | record { eq = eq } = ⊥-elim ( nat-≤> a ≤-refl ) -findPPC key value n@(node key₁ v1 tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) - record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeRightDown tree tree₁ (findPR.ti Pre) ; si = s-right c (findPR.si Pre) - ; ci = findP2 } depth-2< where - findP2 : findPC key value tree₁ (tree₁ ∷ st) - findP2 with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect findPC.tree1 (findPR.ci Pre) - findP2 | r-node | node key value ti ti₁ | eq = ⊥-elim ( nat-≤> c ≤-refl ) - findP2 | r-left x ri | ti | eq = ⊥-elim ( nat-<> x c ) - findP2 | r-right x ri | node key value t t₁ | record { eq = refl } = record { tree1 = t₁ ; ci = ri } - findP2 | r-leaf | leaf | record { eq = eq } = ⊥-elim ( nat-≤> c ≤-refl ) - findPPC1 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) - → findPR key tree stack (findPC key value ) - → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC key value ) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC key value ) + → findPR key tree stack (findPC value ) + → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC value ) → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC value ) → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t findPPC1 {n} {_} {A} key value tree stack Pr next exit = findPP key tree stack Pr findext next exit where - findext01 : {key₁ : ℕ} {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A} → - findPR key₁ (node key₂ v1 tree₁ tree₂) st (findPC key value) → key₁ < key₂ → findPC key value tree₁ (tree₁ ∷ st) - findext01 = {!!} - findext : findExt (findPC key value) - findext = record { c1 = findext01 ; c2 = {!!} } + findext01 : {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A} + → (Pre : findPR key (node key₂ v1 tree₁ tree₂) st (findPC value) ) + → key < key₂ → findPC value key tree₁ (tree₁ ∷ st) + findext01 Pre a with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect findPC.tree1 (findPR.ci Pre) + ... | r-leaf | leaf | record { eq = refl } = ⊥-elim ( nat-≤> a ≤-refl) + ... | r-node | node key value t1 t3 | record { eq = refl } = ⊥-elim ( nat-≤> a ≤-refl ) + ... | r-right x t | t1 | t2 = ⊥-elim (nat-<> x a) + ... | r-left x ri | node key value t1 t3 | record { eq = refl } = record { tree1 = t1 ; ci = ri } + findext02 : {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A} + → (Pre : findPR key (node key₂ v1 tree₁ tree₂) st (findPC value) ) + → key > key₂ → findPC value key tree₂ (tree₂ ∷ st) + findext02 Pre c with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect findPC.tree1 (findPR.ci Pre) + ... | r-leaf | leaf | record { eq = refl } = ⊥-elim ( nat-≤> c ≤-refl) + ... | r-node | node key value t1 t3 | record { eq = refl } = ⊥-elim ( nat-≤> c ≤-refl ) + ... | r-left x t | t1 | t2 = ⊥-elim (nat-<> x c) + ... | r-right x ri | node key value t1 t3 | record { eq = refl } = record { tree1 = t3 ; ci = ri } + findext : findExt key (findPC value ) + findext = record { c1 = findext01 ; c2 = findext02 } insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ insertTreeSpec0 _ _ _ = tt @@ -681,12 +665,12 @@ containsTree : {n : Level} {A : Set n} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ containsTree {n} {A} tree tree1 key value P RT = TerminatingLoopS (bt A ∧ List (bt A) ) - {λ p → findPR key (proj1 p) (proj2 p) (findPC key value ) } (λ p → bt-depth (proj1 p)) + {λ p → findPR key (proj1 p) (proj2 p) (findPC value ) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫ record { tree0 = tree ; ti0 = RTtoTI0 _ _ _ _ P RT ; ti = RTtoTI0 _ _ _ _ P RT ; si = s-single ; ci = record { tree1 = tree1 ; ci = RT } } $ λ p P loop → findPPC1 key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) $ λ t1 s1 P2 found? → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where - lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value )) → top-value t1 ≡ just value + lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC value )) → top-value t1 ≡ just value lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) (findPC.ci (findPR.ci P2)) (findPR.si P2) found? where lemma8 : {tree1 t1 : bt A } → replacedTree key value tree1 t1 → node-key t1 ≡ just key → top-value t1 ≡ just value lemma8 {.leaf} {node key value .leaf .leaf} r-leaf refl = refl