Mercurial > hg > Gears > GearsAgda
changeset 758:2488a3402c19
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 May 2023 07:42:19 +0900 |
parents | edfeedb45595 |
children | 8435718138d1 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 46 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Mon May 01 09:08:01 2023 +0900 +++ b/hoareBinaryTree1.agda Tue May 02 07:42:19 2023 +0900 @@ -524,19 +524,19 @@ data RBtreeInvariant {n : Level} {A : Set n} : (tree : bt (Color ∧ A)) → (bd : ℕ) → Set n where rb-leaf : RBtreeInvariant leaf 0 - rb-single : (key : ℕ) → (value : A) → (c : Color) → RBtreeInvariant (node key ⟪ c , value ⟫ leaf leaf) 1 - rb-right-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } - → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) d - → RBtreeInvariant (node key ⟪ Red , value ⟫ leaf (node key₁ ⟪ Black , value₁ ⟫ t t₁)) d - rb-right-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } {c : Color} - → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) d - → RBtreeInvariant (node key ⟪ Black , value ⟫ leaf (node key₁ ⟪ c , value₁ ⟫ t t₁)) (suc d) - rb-left-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } - → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) d - → RBtreeInvariant (node key₁ ⟪ Red , value ⟫ (node key ⟪ Black , value₁ ⟫ t t₁) leaf ) d - rb-left-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } {c : Color} - → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) d - → RBtreeInvariant (node key₁ ⟪ Black , value ⟫ (node key ⟪ c , value₁ ⟫ t t₁) leaf) (suc d) + rb-single : (key : ℕ) → (value : A) → RBtreeInvariant (node key ⟪ Black , value ⟫ leaf leaf) 1 + rb-right-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ + → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) 1 + → RBtreeInvariant (node key ⟪ Red , value ⟫ leaf (node key₁ ⟪ Black , value₁ ⟫ t t₁)) 1 + rb-right-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {c : Color} + → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) 1 + → RBtreeInvariant (node key ⟪ Black , value ⟫ leaf (node key₁ ⟪ c , value₁ ⟫ t t₁)) 1 + rb-left-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ + → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) 1 + → RBtreeInvariant (node key₁ ⟪ Red , value ⟫ (node key ⟪ Black , value₁ ⟫ t t₁) leaf ) 1 + rb-left-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {c : Color} + → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) 1 + → RBtreeInvariant (node key₁ ⟪ Black , value ⟫ (node key ⟪ c , value₁ ⟫ t t₁) leaf) 1 rb-node-red : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → {d : ℕ} → RBtreeInvariant (node key ⟪ Black , value ⟫ t₁ t₂) d → RBtreeInvariant (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄) d @@ -547,6 +547,14 @@ → RBtreeInvariant (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄) d → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ (node key ⟪ c , value ⟫ t₁ t₂) (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄)) (suc d) +tesr-rb-0 : RBtreeInvariant {_} {ℕ} leaf 0 +tesr-rb-0 = rb-leaf + +tesr-rb-1 : RBtreeInvariant {_} {ℕ} (node 10 ⟪ Black , 10 ⟫ leaf leaf) 1 +tesr-rb-1 = rb-single 10 10 + +tesr-rb-2 : RBtreeInvariant {_} {ℕ} (node 10 ⟪ Red , 10 ⟫ (node 5 ⟪ Black , 5 ⟫ leaf leaf) leaf) 1 +tesr-rb-2 = rb-left-red (add< _) ( rb-single 10 5) -- This one can be very difficult -- data replacedRBTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt (Color ∧ A) ) → Set n where @@ -631,7 +639,7 @@ → RBtreeInvariant orig d0 → (stack : List (bt (Color ∧ A))) → (pg : PG (Color ∧ A) tree stack ) → RBtreeInvariant tree ds ∧ RBtreeInvariant (PG.parent pg) dp ∧ RBtreeInvariant (PG.grand pg) dg -PGtoRBinvariant = ? +PGtoRBinvariant = {!!} findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → {d d0 : ℕ} → RBtreeInvariant tree0 d0 @@ -639,7 +647,7 @@ → (next : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → {d1 : ℕ} → RBtreeInvariant tree1 d1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → {d1 : ℕ} → RBtreeInvariant tree1 d1 ∧ stackInvariant key tree1 tree0 stack → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t -findRBT = ? +findRBT = {!!} rotateLeft : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {d0 : ℕ} @@ -663,9 +671,9 @@ rotateLeft {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = rotateLeft1 where rotateLeft1 : t rotateLeft1 with stackToPG tree orig stack si - ... | case1 x = ? - ... | case2 (case1 x) = ? - ... | case2 (case2 pg) = ? + ... | case1 x = exit {!!} {!!} {!!} {!!} rr + ... | case2 (case1 x) = {!!} + ... | case2 (case2 pg) = {!!} rotateRight : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {d0 : ℕ} @@ -689,9 +697,9 @@ rotateRight {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = rotateRight1 where rotateRight1 : t rotateRight1 with stackToPG tree orig stack si - ... | case1 x = ? - ... | case2 (case1 x) = ? - ... | case2 (case2 pg) = ? + ... | case1 x = {!!} + ... | case2 (case1 x) = {!!} + ... | case2 (case2 pg) = {!!} insertCase5 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {d0 : ℕ} @@ -715,15 +723,15 @@ insertCase5 {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = insertCase51 where insertCase51 : t insertCase51 with stackToPG tree orig stack si - ... | case1 eq = ? - ... | case2 (case1 eq ) = ? + ... | case1 eq = {!!} + ... | case2 (case1 eq ) = {!!} ... | case2 (case2 pg) with PG.pg pg - ... | s2-s1p2 x x₁ = rotateRight ? ? ? ? ? ? ? ? ? ? ? ? ? next exit + ... | s2-s1p2 x x₁ = rotateRight {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit -- x : PG.parent pg ≡ node kp vp tree n1 -- x₁ : PG.grand pg ≡ node kg vg (PG.parent pg) (PG.uncle pg) - ... | s2-1sp2 x x₁ = rotateLeft ? ? ? ? ? ? ? ? ? ? ? ? ? next exit - ... | s2-s12p x x₁ = rotateLeft ? ? ? ? ? ? ? ? ? ? ? ? ? next exit - ... | s2-1s2p x x₁ = rotateLeft ? ? ? ? ? ? ? ? ? ? ? ? ? next exit + ... | s2-1sp2 x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit + ... | s2-s12p x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit + ... | s2-1s2p x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit -- = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg) @@ -755,35 +763,35 @@ insertCase2 tree leaf uncle grand stack si (s2-1sp2 () x₁) insertCase2 tree leaf uncle grand stack si (s2-s12p () x₁) insertCase2 tree leaf uncle grand stack si (s2-1s2p () x₁) - insertCase2 tree parent@(node kp ⟪ Red , _ ⟫ _ _) uncle grand stack si pg = next ? ? ? ? ? ? ? ? ? ? ? ? - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) leaf grand stack si pg = ? - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Red , _ ⟫ _ _ ) grand stack si pg = next ? ? ? ? ? ? ? ? ? ? ? ? + insertCase2 tree parent@(node kp ⟪ Red , _ ⟫ _ _) uncle grand stack si pg = next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) leaf grand stack si pg = {!!} + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Red , _ ⟫ _ _ ) grand stack si pg = next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s1p2 x x₁) = - insertCase5 key value orig tree ? repl rbio ? ? stack si ? ri ? ? next exit + insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit -- tree is left of parent, parent is left of grand -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1 -- grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁) insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1sp2 x x₁) = - rotateLeft key value orig tree ? repl rbio ? ? stack si ? ri ? ? - (λ a b c d e f h i j k l m → insertCase5 key value a b c d ? ? h i j k l ? ? next exit ) exit + rotateLeft key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} + (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit -- tree is right of parent, parent is left of grand rotateLeft -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree -- grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁) insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s12p x x₁) = - rotateRight key value orig tree ? repl rbio ? ? stack si ? ri ? ? - (λ a b c d e f h i j k l m → insertCase5 key value a b c d ? ? h i j k l ? ? next exit ) exit + rotateRight key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} + (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit -- tree is left of parent, parent is right of grand, rotateRight -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1 -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1s2p x x₁) = - insertCase5 key value orig tree ? repl rbio ? ? stack si ? ri ? ? next exit + insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit -- tree is right of parent, parent is right of grand -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) insertCase1 : t insertCase1 with stackToPG tree orig stack si - ... | case1 eq = ? - ... | case2 (case1 eq ) = ? + ... | case1 eq = exit repl repl rbir {!!} (subst₂ (λ j k → replacedTree key ⟪ {!!} , value ⟫ j k ) {!!} {!!} r-node ) + ... | case2 (case1 eq ) = {!!} ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg)