Mercurial > hg > Gears > GearsAgda
changeset 499:2c125aa7a577
stack.agda leveled
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jan 2018 09:34:46 +0900 |
parents | 01f0a2cdcc43 |
children | 6d984ea42fd2 |
files | src/parallel_execution/stack.agda |
diffstat | 1 files changed, 42 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/stack.agda Mon Jan 01 06:38:13 2018 +0900 +++ b/src/parallel_execution/stack.agda Mon Jan 01 09:34:46 2018 +0900 @@ -1,4 +1,4 @@ -open import Level renaming (suc to succ ) +open import Level renaming (suc to succ ; zero to Zero ) module stack where open import Relation.Binary.PropositionalEquality @@ -21,7 +21,7 @@ Nothing : Maybe a Just : a -> Maybe a -record Stack {n : Level } {a : Set n } {t : Set (succ n) }(stackImpl : Set n ) : Set (succ n ) where +record Stack {n m : Level } {a : Set n } {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where field stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t @@ -72,14 +72,14 @@ top : Maybe (Element a) open SingleLinkedStack -pushSingleLinkedStack : {n : Level } {t : Set (succ n) } {Data : Set n} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t +pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next stack1 where element = cons datum (top stack) stack1 = record {top = Just element} -popSingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t +popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack1 (Just data1) @@ -87,30 +87,30 @@ data1 = datum d stack1 = record { top = (next d) } -pop2SingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t -pop2SingleLinkedStack {n} {t} {a} stack cs with (top stack) +pop2SingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t +pop2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing -... | Just d = pop2SingleLinkedStack' stack cs +... | Just d = pop2SingleLinkedStack' {n} {m} stack cs where - pop2SingleLinkedStack' : {n : Level } {t : Set (succ n) } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t + pop2SingleLinkedStack' : {n m : Level } {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t pop2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs (record {top = (next d)}) (Just (datum d)) (Just (datum d1)) -getSingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t +getSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t getSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack (Just data1) where data1 = datum d -get2SingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t -get2SingleLinkedStack {_} {t} {a} stack cs with (top stack) +get2SingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t +get2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing -... | Just d = get2SingleLinkedStack' stack cs +... | Just d = get2SingleLinkedStack' {n} {m} stack cs where - get2SingleLinkedStack' : {n : Level} {t : Set (succ n) } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t + get2SingleLinkedStack' : {n m : Level} {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t get2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs stack (Just (datum d)) (Just (datum d1)) @@ -120,7 +120,7 @@ emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} -createSingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> Stack {n} {a} {t} (SingleLinkedStack a) +createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} {a} {t} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack @@ -130,7 +130,7 @@ } -test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool +test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False @@ -142,6 +142,12 @@ test03 : {n : Level } {a : Set n} -> a -> Bool test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 +-- after a push and a pop, the stack is empty +lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False +lemma = refl + +-- after push 1 and 2, pop2 get 1 and 2 + testStack01 : {n : Level } {a : Set n} -> a -> Bool testStack01 v = pushStack createSingleLinkedStack v ( \s -> popStack s (\s1 d1 -> True)) @@ -151,11 +157,11 @@ \s -> pushStack s 2 cs) -testStack031 : (d1 d2 : ℕ ) -> Bool +testStack031 : (d1 d2 : ℕ ) -> Bool {Zero} testStack031 1 2 = True testStack031 _ _ = False -testStack032 : (d1 d2 : Maybe ℕ) -> Bool +testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero} testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False @@ -166,53 +172,50 @@ testStack04 : Bool testStack04 = testStack02 (\s -> testStack03 s testStack032) -testStack05 : { n : Level} -> Set n -testStack05 = {!!} -- testStack04 ≡ True - - -lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False -lemma = refl +testStack05 : Set (succ Zero) +testStack05 = testStack04 ≡ True id : {n : Level} {A : Set n} -> A -> A id a = a +-- push a, n times n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-push zero s = s -n-push {_} {A} {a} (suc n) s = {!!} -- pushSingleLinkedStack (n-push {_} {A} {a} n s) a (\s -> ?) +n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s ) -n-pop : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A +n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-pop zero s = s -n-pop {_} {A} {a} (suc n) s = {!!} -- popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) +n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s ) open ≡-Reasoning -push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> {!!} -- popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s +push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s push-pop-equiv s = refl -push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> {!!} -- n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s +push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {_} {A} {a} (suc n) s = begin - {!!} -- n-pop {_} {n} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) + n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) ≡⟨ refl ⟩ - {!!} -- popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) - ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> {!!})) (push-and-n-pop n s) ⟩ - {!!} -- popSingleLinkedStack (n-pop {_} {n} {A} {a} n s) (\s _ -> s) + popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) + ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩ + popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) ≡⟨ refl ⟩ - {!!} -- n-pop {_} {n} {A} {a} (suc n) s + n-pop {_} {A} {a} (suc n) s ∎ -n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> {!!} -- (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s +n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s n-push-pop-equiv zero s = refl -n-push-pop-equiv {A} {a} (suc n) s = begin - n-pop {A} {a} (suc n) (n-push (suc n) s) +n-push-pop-equiv {_} {A} {a} (suc n) s = begin + n-pop {_} {A} {a} (suc n) (n-push (suc n) s) ≡⟨ refl ⟩ - {!!} -- n-pop {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) + n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) ≡⟨ push-and-n-pop n (n-push n s) ⟩ - n-pop {A} {a} n (n-push n s) + n-pop {_} {A} {a} n (n-push n s) ≡⟨ n-push-pop-equiv n s ⟩ - s + s ∎