changeset 661:323533798054

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 21 Nov 2021 19:31:44 +0900 (2021-11-21)
parents 712e2998c76b
children a8959c8340e0
files hoareBinaryTree.agda
diffstat 1 files changed, 33 insertions(+), 68 deletions(-) [+]
line wrap: on
line diff
--- a/hoareBinaryTree.agda	Sun Nov 21 19:03:22 2021 +0900
+++ b/hoareBinaryTree.agda	Sun Nov 21 19:31:44 2021 +0900
@@ -102,13 +102,13 @@
        → treeInvariant (node key₂ value₂ t₃ t₄)
        → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) 
 
-data stackInvariant {n : Level} {A : Set n}  (key : ℕ) : (top orig : bt A) → (stack  : List (bt A)) → Set n where
-    s-nil :  {tree tree0 : bt A} → stackInvariant key tree tree0 []
-    s-single :  {tree tree0 : bt A} →  stackInvariant key tree tree0 [] →  stackInvariant key tree0 tree0 (tree0 ∷ [])
+data stackInvariant {n : Level} {A : Set n}  (key : ℕ) : (orig : bt A) → (stack  : List (bt A)) → Set n where
+    s-nil :  {tree0 : bt A} → stackInvariant key tree0 []
+    s-single :  {tree0 : bt A} →  stackInvariant key tree0 (tree0 ∷ [])
     s-right :  {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
-        → key₁ < key  →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) →  stackInvariant key tree tree0 (tree ∷ st)
+        → key₁ < key  →  stackInvariant key tree0 (node key₁ v1 tree₁ tree ∷ st) →  stackInvariant key tree0 (tree ∷ node key₁ v1 tree₁ tree ∷ st)
     s-left :  {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
-        → key  < key₁ →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) →  stackInvariant key tree₁ tree0 (tree₁ ∷ st)
+        → key < key₁  →  stackInvariant key tree0 (node key₁ v1 tree₁ tree ∷ st) →  stackInvariant key tree0 (tree₁ ∷ node key₁ v1 tree₁ tree ∷ st)
 
 data replacedTree  {n : Level} {A : Set n} (key : ℕ) (value : A)  : (tree tree1 : bt A ) → Set n where
     r-leaf : replacedTree key value leaf (node key value leaf leaf)
@@ -118,11 +118,11 @@
     r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
           → k > key →  replacedTree key value t1 t2 →  replacedTree key value (node k v1 t1 t) (node k v1 t2 t) 
 
-replFromStack : {n : Level} {A : Set n}  {key : ℕ} {top orig : bt A} → {stack  : List (bt A)} →  stackInvariant key top orig stack → bt A
+replFromStack : {n : Level} {A : Set n}  {key : ℕ} {orig : bt A} → {stack  : List (bt A)} →  stackInvariant key orig stack → bt A
 replFromStack (s-nil {tree} ) = tree
-replFromStack (s-single {tree} _) = tree
-replFromStack (s-right {tree} x _ st) = tree
-replFromStack (s-left {tree} x _ st) = tree
+replFromStack (s-single {tree} ) = tree
+replFromStack (s-right {tree} x  st) = tree
+replFromStack (s-left {tree} x  st) = tree
 
 add< : { i : ℕ } (j : ℕ ) → i < suc i + j
 add<  {i} j = begin
@@ -146,26 +146,8 @@
 stack-last (x ∷ []) = just x
 stack-last (x ∷ s) = stack-last s
 
-stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] )
-stackInvariantTest1 = s-right (add< 2) (s-single s-nil) (λ ())
-
-si-property1 :  {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack  : List (bt A)) → ¬ (stack ≡ [])  → stackInvariant key tree tree0 stack
-   → stack-top stack ≡ just tree
-si-property1 key t t0 [] ne (s-nil ) = ⊥-elim ( ne refl )
-si-property1 key t t0 (t ∷ []) ne (s-single _) = refl
-si-property1 key t t0 (t ∷ st) _ (s-right _ _ si) = refl
-si-property1 key t t0 (t ∷ st) _ (s-left _ _ si) = refl
-
-si-property-last :  {n : Level} {A : Set n}  (key : ℕ) (tree tree0 : bt A) → (stack  : List (bt A)) → ¬ (stack ≡ [])   → stackInvariant key tree tree0 stack
-   → stack-last stack ≡ just tree0
-si-property-last key t t0 [] ne s-nil  = ⊥-elim ( ne refl )
-si-property-last key t t0 (t ∷ [])  _ (s-single s-nil)  = refl
-si-property-last key t t0 (t ∷ [])  _ (s-right _ _ ne)  = ⊥-elim ( ne refl )
-si-property-last key t t0 (t ∷ [])  _ (s-left _ _ ne)  = ⊥-elim ( ne refl )
-si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si _) with  si-property1 key _ _ (x ∷ st) (λ ()) si
-... | refl = si-property-last key x t0 (x ∷ st)  (λ ()) si
-si-property-last key t t0 (.t ∷ x ∷ st) ne (s-left _ si _) with  si-property1 key _ _ (x ∷ st)  (λ ()) si
-... | refl = si-property-last key x t0 (x ∷ st)  (λ ()) si
+stackInvariantTest1 : stackInvariant 4 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] )
+stackInvariantTest1 = s-right (add< 2) s-single 
 
 ti-right : {n  : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} →  treeInvariant  (node key₁ v1 tree₁ repl) → treeInvariant repl
 ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
@@ -179,17 +161,6 @@
 ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti
 ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti
 
-stackTreeInvariant : {n  : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A))
-   →  treeInvariant tree → stackInvariant key sub tree stack  → ¬ (stack ≡ [])  → treeInvariant sub
-stackTreeInvariant {_} {A} key sub tree [] ti s-nil ne = ⊥-elim ( ne refl )
-stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single s-nil ) _ = ti
-stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ne) _ = ti-right (si1 si) where
-   si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} →  stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant  (node key₁ v1 tree₁ sub )
-   si1 {tree₁ }  {key₁ }  {v1 }  si = stackTreeInvariant  key (node key₁ v1 tree₁ sub ) tree st ti si ne
-stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si ne) _ = ti-left ( si2 si) where
-   si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} →  stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant  (node key₁ v1 sub tree₁ )
-   si2 {tree₁ }  {key₁ }  {v1 }  si = stackTreeInvariant  key (node key₁ v1 sub tree₁ ) tree st ti si ne
-
 rt-property1 :  {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf )
 rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf ()
 rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node ()
@@ -227,19 +198,18 @@
 open _∧_
 
 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
-        →  treeInvariant tree ∧ ((¬ (stack ≡ []) → stackInvariant key tree tree0 stack ))
-        → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ ((¬ (stack ≡ []) → stackInvariant key tree1 tree0 stack)) → bt-depth tree1 < bt-depth tree   → t )
-        → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ ((¬ (stack ≡ []) → stackInvariant key tree1 tree0 stack))
+        →  treeInvariant tree ∧ stackInvariant key tree0 stack 
+        → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree0 stack → bt-depth tree1 < bt-depth tree   → t )
+        → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree0 stack
                  → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl)
 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁
 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl)
 findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st)
-       ⟪ treeLeftDown tree tree₁ (proj1 Pre)  , (λ ne → findP1 a st (proj2 Pre ))  ⟫ depth-1< where
-   findP1 : key < key₁ → (st : List (bt A)) →  ( ¬ (st ≡ [] ) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st )  → stackInvariant key tree tree0 (tree ∷ st)
-   findP1 a [] si = {!!} -- s-single s-nil
-   findP1 a (x ∷ st) si  with si {!!}
-   ... | t = s-left a t {!!}
+       ⟪ treeLeftDown tree tree₁ (proj1 Pre)  ,  findP1 a st (proj2 Pre)  ⟫ depth-1< where
+   findP1 : key < key₁ → (st : List (bt A)) →  stackInvariant key  tree0 st   → stackInvariant key tree0 (tree ∷ st)
+   findP1 a [] si = ?
+   findP1 a (x ∷ st) si = ?
 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) ,  {!!} ⟫ depth-2<
 
 replaceTree1 : {n  : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) →  treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)
@@ -267,35 +237,30 @@
 
 replaceP : {n m : Level} {A : Set n} {t : Set m}
      → (key : ℕ) → (value : A) → {tree0 tree tree-st : bt A} ( repl : bt A)
-     → (stack : List (bt A)) → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack ∧ replacedTree key value tree repl
+     → (stack : List (bt A)) → treeInvariant tree0 ∧ stackInvariant key tree0 stack ∧ replacedTree key value tree repl
      → (next : ℕ → A → {tree0 tree1 tree-st : bt A } (repl : bt A) → (stack1 : List (bt A))
-         → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack1 ∧ replacedTree key value tree1 repl → length stack1 < length stack → t)
+         → treeInvariant tree0 ∧ stackInvariant key tree0 stack1 ∧ replacedTree key value tree1 repl → length stack1 < length stack → t)
      → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
 replaceP key value {tree0} {tree} {tree-st} repl [] Pre next exit with proj1 (proj2 Pre)
 ... | t = {!!} 
 replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ []) Pre next exit with proj1 (proj2 Pre)
-... | s-single  _ = {!!}
-... | s-right x t _ = {!!}
-... | s-left x t _ = {!!}
+... | s-single   = {!!}
 replaceP key value {tree0} {tree} {tree-st} repl (leaf ∷ leaf ∷ st) Pre next exit with proj1 (proj2 Pre)
-... | s-right x t _ = {!!}
-... | s-left x t _ = {!!}
+... | ()
 replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁
 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) (node key₁ value₁ tree right ∷ st)
                   ⟪ proj1 Pre , ⟪ repl5 (proj1 (proj2 Pre)) , r-left a (proj2 (proj2 Pre))  ⟫ ⟫ ≤-refl where
-    repl5 :  stackInvariant key tree-st tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ tree right) tree0 (node key₁ value₁ tree right ∷ st )
-    repl5 si with si-property1 _ _ _ _ {!!} si
-    repl5 (s-right x si _) | refl = s-left a {!!} {!!}
-    repl5 (s-left x si _) | refl = s-left a {!!} {!!}
+    repl5 :  stackInvariant key tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key  tree0 (node key₁ value₁ tree right ∷ st )
+    repl5 si = {!!}
 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} depth-3<
 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right) st {!!} depth-3<
 replaceP key value {tree0} {tree} {tree-st} repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁
 ... | tri> ¬a ¬b c = next key value  (node key₁ value₁ repl right ) st {!!}  ≤-refl
 ... | tri≈ ¬a b ¬c = next key value  (node key value left right ) st {!!}  ≤-refl where -- this case won't happen
 ... | tri< a ¬b ¬c with proj1 (proj2 Pre)
-... | s-single si1 = {!!}
-... | s-right x si1 _ = {!!}
-... | s-left x si1 _ = next key value (node key₁ value₁ repl right )  st ⟪ proj1 Pre , ⟪ si1 ,  r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl   
+... | s-single  = {!!}
+... | s-right x si1  = {!!}
+... | s-left x si1  = next key value (node key₁ value₁ repl right )  st ⟪ proj1 Pre , ⟪ si1 ,  r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl   
 -- = next key value (node key₁ value₁ repl right )  st ⟪ proj1 Pre , ⟪ repl2 (proj1 (proj2 Pre)) ,  r-left a {!!}  ⟫ ⟫ ≤-refl   where
 --    repl2 : stackInvariant key tree tree0 (node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ left right) tree0 st
 --    repl2 (s-single .(node key₁ value₁ left right)) = {!!}
@@ -331,11 +296,11 @@
 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
      → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
 insertTreeP {n} {m} {A} {t} tree key value P exit =
-   TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫  ⟪ P , {!!}  ⟫
+   TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key  tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫  ⟪ P , {!!}  ⟫
        $ λ p P loop → findP key (proj1 p)  tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t ,  s  ⟫ {!!} lt )
        $ λ t _ s P C → replaceNodeP key value t C (proj1 P)
        $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
-            {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p)  ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
+            {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key  tree (proj1 p)  ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
                (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!}  , R ⟫ ⟫
        $  λ p P1 loop → replaceP key value  (proj2 (proj2 p)) (proj1 p) {!!}
             (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1  ⟫ ⟫ {!!} lt )  exit 
@@ -351,7 +316,7 @@
    field
      tree0 : bt A
      ti : treeInvariant tree0
-     si : stackInvariant key tree tree0 stack
+     si : stackInvariant key tree0 stack
      ci : C tree stack     -- data continuation
    
 findPP : {n m : Level} {A : Set n} {t : Set m}
@@ -365,7 +330,7 @@
 findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c =
           next tree (n ∷ st) (record {ti = findPR.ti Pre  ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where 
     tree0 =  findPR.tree0 Pre 
-    findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st →  stackInvariant key {!!} tree0 (node key₁ v1 tree tree₁ ∷ st)
+    findPP2 : (st : List (bt A)) → stackInvariant key tree0 st →  stackInvariant key tree0 (node key₁ v1 tree tree₁ ∷ st)
     findPP2 = {!!}
     findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
     findPP1 =  depth-1<
@@ -380,7 +345,7 @@
        $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t ,  s  ⟫ P1 lt )
        $ λ t s _ P → replaceNodeP key value t {!!} {!!}
        $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
-            {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p)  ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
+            {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key  tree (proj1 p)  ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
                (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!}  , R ⟫ ⟫
        $  λ p P1 loop → replaceP key value  (proj2 (proj2 p)) (proj1 p) {!!}
             (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1  ⟫ ⟫ {!!} lt )  exit 
@@ -412,6 +377,6 @@
            lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value
            lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1  (findPR.ci P2)) ( findPC.ci  (findPR.ci P2)) (findPR.si P2) found? where
               lemma7 :  (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) →
-                 replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1  → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key)  →   top-value t1 ≡ just value
+                 replacedTree key value t1 tree1 → stackInvariant key tree0 s1  → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key)  →   top-value t1 ≡ just value
               lemma7 = {!!}