Mercurial > hg > Gears > GearsAgda
changeset 739:3443703a68cc
it is no good to develop all invariant at once
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Apr 2023 19:15:59 +0900 |
parents | da56e6fb7667 |
children | 9ff79715588e |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 23 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Sat Apr 22 14:54:28 2023 +0900 +++ b/hoareBinaryTree1.agda Sat Apr 22 19:15:59 2023 +0900 @@ -566,6 +566,9 @@ color : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → Color color {n} A {k} {d} {c} rb = c +rb-key : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → ℕ +rb-key {n} A {k} {d} {c} rb = k + RB→bt : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → bt A RB→bt {n} A (rb-leaf _) = leaf RB→bt {n} A (rb-single key value _) = node key value leaf leaf @@ -656,25 +659,28 @@ → length stack1 < length stack → t ) → (exit : {k1 d1 : ℕ} {c1 : Color} → (repl1 : RBTree A k1 c1 d1 ) → (rot : bt A ) → (ri : rotatedTree (RB→bt A orig) rot ) → replacedTree key value rot (RB→bt A repl1) → t ) → t -replaceRBP {n} {m} {A} {t} key value {_} {key1} orig tree stack si next exit = insertCase1 stack _ _ refl refl si where +replaceRBP {n} {m} {A} {t} key value {_} {key1} orig tree stack si next exit = insertCase1 tree stack _ _ refl refl si where insertCase2 : {k0 k1 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (tree : RBTree A k0 c0 d0) → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → (stack : List (bt A)) → (tr to : bt A) → RB→bt A grand ≡ tr → RB→bt A orig ≡ to → (si : stackInvariant key tr to stack ) → (pg : ParentGrand (RB→bt A tree) (RB→bt A parent) tr ) → t - insertCase2 tree parent grand stack tr to treq toeq si pg with color A parent - ... | Black = next grand ? ? stack si ? - ... | Red = ? where - insertCase4 : (key1 : ℕ) → (si : ParentGrand ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t - insertCase4 = ? - insertCase3 : (key1 : ℕ) → (si : ParentGrand ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t - insertCase3 key1 si parent grandparent = ? - insertCase1 : (stack : List (bt A)) → (tr to : bt A) → RB→bt A tree ≡ tr → RB→bt A orig ≡ to → (si : stackInvariant key tr to stack ) → t - insertCase1 .(tr ∷ []) tr .tr req oeq s-nil = ? - insertCase1 .(tr ∷ node _ _ _ tr ∷ []) tr .(node _ _ _ tr) req oeq (s-right x s-nil) = ? - insertCase1 .(tr ∷ node _ _ _ tr ∷ _) tr to req oeq (s-right x (s-right x₁ si)) = ? - insertCase1 .(tr ∷ node _ _ _ tr ∷ _) tr to req oeq (s-right x (s-left x₁ si)) = ? - insertCase1 .(tr ∷ node _ _ tr _ ∷ []) tr .(node _ _ tr _) req oeq (s-left x s-nil) = ? - insertCase1 .(tr ∷ node _ _ tr _ ∷ _) tr to req oeq (s-left x (s-right x₁ si)) = ? - insertCase1 .(tr ∷ node _ _ tr _ ∷ _) tr to req oeq (s-left x (s-left x₁ si)) = ? + insertCase2 tree parent grand stack tr to treq toeq si pg = ? + insertCase1 : {k1 d1 : ℕ} {c1 : Color } (tree : RBTree A k1 c1 d1) + (stack : List (bt A)) → (tr to : bt A) → RB→bt A tree ≡ tr → RB→bt A orig ≡ to → (si : stackInvariant key tr to stack ) → t + insertCase1 (rb-leaf _) .(RB→bt A (rb-leaf _) ∷ []) .(RB→bt A (rb-leaf _)) .(RB→bt A (rb-leaf _)) refl oeq s-nil = ? + insertCase1 (rb-leaf _) .(RB→bt A (rb-leaf _) ∷ _) .(RB→bt A (rb-leaf _)) to refl oeq (s-right x si) = ? + insertCase1 (rb-leaf _) .(RB→bt A (rb-leaf _) ∷ _) .(RB→bt A (rb-leaf _)) to refl oeq (s-left x si) = ? + insertCase1 (rb-single _ value _) .(tr ∷ []) tr .tr req oeq s-nil = ? + insertCase1 (rb-single _ value _) .(tr ∷ _) tr to req oeq (s-right x si) = ? + insertCase1 (rb-single _ value _) .(tr ∷ _) tr to req oeq (s-left x si) = ? + insertCase1 (t-right-red _ value x (rb-leaf _)) stack tr to req oeq si = ? + insertCase1 (t-right-red _ value x (rb-single _ value₁ .Black)) stack tr to req oeq si = ? + insertCase1 (t-right-red _ value x (t-right-black _ value₁ x₁ tree)) stack tr to req oeq si = ? + insertCase1 (t-right-red _ value x (t-left-black _ value₁ x₁ tree)) stack tr to req oeq si = ? + insertCase1 (t-right-red _ value x (t-node-black _ value₁ x₁ x₂ tree tree₁)) stack tr to req oeq si = ? + insertCase1 (t-right-black _ value x tree) stack tr to req oeq si = ? + insertCase1 (t-left-red _ value x tree) stack tr to req oeq si = ? + insertCase1 (t-left-black _ value x tree) stack tr to req oeq si = ? + insertCase1 (t-node-red _ value x x₁ tree tree₁) stack tr to req oeq si = ? + insertCase1 (t-node-black _ value x x₁ tree tree₁) stack tr to req oeq si = ? -