Mercurial > hg > Gears > GearsAgda
changeset 598:40ffa0833d03
add new BinaryTree
author | ryokka |
---|---|
date | Wed, 26 Feb 2020 18:27:54 +0900 |
parents | 89fd7cf09b2a |
children | 7ae0c25d2b58 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 67 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hoareBinaryTree1.agda Wed Feb 26 18:27:54 2020 +0900 @@ -0,0 +1,67 @@ +module hoareBinaryTree1 where + +open import Level renaming (zero to Z ; suc to succ) + +open import Data.Nat hiding (compare) +open import Data.Nat.Properties as NatProp +open import Data.Maybe +-- open import Data.Maybe.Properties +open import Data.Empty +open import Data.List +open import Data.Product + +open import Function as F hiding (const) + +open import Relation.Binary +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary +open import logic + + +data bt {n : Level} (A : Set n) : Set n where + bt-leaf : bt A + bt-node : (key : ℕ) → A → + (ltree : bt A) → (rtree : bt A) → bt A + +bt-find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) + → ( bt A → List (bt A) → t ) → t +bt-find {n} {m} {A} {t} key leaf@(bt-leaf) stack exit = exit leaf stack +bt-find {n} {m} {A} {t} key (bt-node key₁ AA tree tree₁) stack next with <-cmp key key₁ +bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA tree tree₁) stack exit | tri≈ ¬a b ¬c = exit node stack +bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) stack next | tri< a ¬b ¬c = bt-find key ltree (node ∷ stack) next +bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) stack next | tri> ¬a ¬b c = bt-find key rtree (node ∷ stack) next + +bt-replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → A → bt A → List (bt A) → (bt A → t ) → t +bt-replace {n} {m} {A} {t} ikey a otree stack next = bt-replace0 otree where + bt-replace1 : bt A → List (bt A) → t + bt-replace1 tree [] = next tree + bt-replace1 node ((bt-leaf) ∷ stack) = bt-replace1 node stack + bt-replace1 node ((bt-node key₁ b x x₁) ∷ stack) = bt-replace1 (bt-node key₁ b node x₁) stack + bt-replace0 : (tree : bt A) → t + bt-replace0 tree@(bt-node key _ ltr rtr) = bt-replace1 (bt-node ikey a ltr rtr) stack -- find case + bt-replace0 bt-leaf = bt-replace1 (bt-node ikey a bt-leaf bt-leaf) stack + + + + +bt-empty : {n : Level} {A : Set n} → bt A +bt-empty = bt-leaf + +bt-insert : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → A → bt A → (bt A → t ) → t +bt-insert key a tree next = bt-find key tree [] (λ mtree stack → bt-replace key a mtree stack (λ tree → next tree) ) + +find-test : bt ℕ +find-test = bt-find 5 bt-empty [] (λ x y → x) + + +insert-test : bt ℕ +insert-test = bt-insert 5 7 bt-empty (λ x → x) + +insert-test1 : bt ℕ +insert-test1 = bt-insert 5 7 bt-empty (λ x → bt-insert 15 17 x (λ y → y)) + + +tree+stack : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n +tree+stack {n} {A} bt-leaf mtree stack = (mtree ≡ bt-leaf) ∧ (stack ≡ []) +tree+stack {n} {A} (bt-node key x tree tree₁) mtree stack = bt-replace key x mtree stack (λ ntree → ntree ≡ tree) +