Mercurial > hg > Gears > GearsAgda
changeset 503:413ce51da50b
separate methods in stack.agda
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jan 2018 19:14:09 +0900 |
parents | 8d997f0c9b2c |
children | 0bec9490c199 |
files | src/parallel_execution/stack.agda |
diffstat | 1 files changed, 26 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/stack.agda Mon Jan 01 18:58:05 2018 +0900 +++ b/src/parallel_execution/stack.agda Mon Jan 01 19:14:09 2018 +0900 @@ -21,31 +21,31 @@ Nothing : Maybe a Just : a -> Maybe a -record Stack {n m : Level } {a : Set n } {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where +record StackMethods {n m : Level } {a : Set n } {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where field - stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t pop2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t get : stackImpl -> (stackImpl -> Maybe a -> t) -> t get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t -open Stack - -pushStack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> a -> (Stack si -> t) -> t -pushStack s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) - -popStack : {n m : Level } { t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t -popStack s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) +open StackMethods -pop2Stack : {n m : Level } { t : Set m} { a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t -pop2Stack s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) +record Stack {n m : Level } {a : Set n } {t : Set m } (si : Set n ) : Set (m Level.⊔ n) where + field + stack : si + stackMethods : StackMethods {n} {m} {a} {t} si + pushStack : a -> (Stack si -> t) -> t + pushStack d next = push (stackMethods ) (stack ) d (\s1 -> next (record {stack = s1 ; stackMethods = stackMethods } )) + popStack : (Stack si -> Maybe a -> t) -> t + popStack next = pop (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 ) + pop2Stack : (Stack si -> Maybe a -> Maybe a -> t) -> t + pop2Stack next = pop2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2) + getStack : (Stack si -> Maybe a -> t) -> t + getStack next = get (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 ) + get2Stack : (Stack si -> Maybe a -> Maybe a -> t) -> t + get2Stack next = get2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2) -getStack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t -getStack s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) - -get2Stack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t -get2Stack s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) - +open Stack data Element {n : Level } (a : Set n) : Set n where cons : a -> Maybe (Element a) -> Element a @@ -121,13 +121,16 @@ emptySingleLinkedStack = record {top = Nothing} createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} {a} {t} (SingleLinkedStack a) -createSingleLinkedStack = record { stack = emptySingleLinkedStack - ; push = pushSingleLinkedStack +createSingleLinkedStack = record { + stack = emptySingleLinkedStack ; + stackMethods = record { + push = pushSingleLinkedStack ; pop = popSingleLinkedStack ; pop2 = pop2SingleLinkedStack ; get = getSingleLinkedStack ; get2 = get2SingleLinkedStack } + } test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} @@ -176,6 +179,10 @@ testStack05 = refl ------ +-- +-- this should be proved by properties of the stack inteface, not only by the implementation, +-- and the implementation have to provides the properties. +-- -- push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : Stack (SingleLinkedStack D) ) -> -- pushStack s x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )))) -- push->push->pop2 {l} {D} x y s = {!!}