Mercurial > hg > Gears > GearsAgda
changeset 596:4be84ddbf593
...
author | ryokka |
---|---|
date | Thu, 16 Jan 2020 17:53:47 +0900 |
parents | 0927df986552 |
children | 89fd7cf09b2a |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 20 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Thu Jan 16 16:04:59 2020 +0900 +++ b/hoareBinaryTree.agda Thu Jan 16 17:53:47 2020 +0900 @@ -66,14 +66,14 @@ -- -- no children , having left node , having right node , having both -- -data bt' {n : Level} (A : Set n) : (key : ℕ) → Set n where -- (a : Setn) +data bt' {n : Level} { l r : ℕ } (A : Set n) : (key : ℕ) → Set n where -- (a : Setn) bt'-leaf : (key : ℕ) → bt' A key bt'-node : { l r : ℕ } → (key : ℕ) → (value : A) → - bt' {n} A l → bt' {n} A r → l ≤ key → key ≤ r → bt' A key + bt' {n} {{!!}} {{!!}} A l → bt' {n} {{!!}} {{!!}} A r → l ≤ key → key ≤ r → bt' A key -data bt'-path {n : Level} (A : Set n) : Set n where -- (a : Setn) - bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key ≤ left-key) → bt'-path A - bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key ≤ key) → bt'-path A +data bt'-path {n : Level} (A : Set n) : ℕ → Set n where -- (a : Setn) + bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key ≤ left-key) → bt'-path A left-key + bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key ≤ key) → bt'-path A right-key test = bt'-left {Z} {ℕ} 3 {5} (bt'-leaf 5) (s≤s (s≤s (s≤s z≤n))) @@ -95,31 +95,33 @@ reverse した stack を使って find をチェックするかんじ? --} + tree+stack : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (tree mtree : bt' A tn ) - → (stack : List (bt'-path A )) → Set n -tree+stack tree mtree [] = tree ≡ mtree -tree+stack {n} {m} {A} {t} {tn} tree mtree (bt'-left key x x₁ ∷ stack) = (mtree ≡ {!!}) ∧ (tree+stack {n} {_} {_} {_} {tn} tree {!!} stack) -tree+stack {n} {m} {A} {t} {tn} tree mtree (bt'-right key x x₁ ∷ stack) = (mtree ≡ {!!}) ∧ (tree+stack {n} {_} {_} {_} {tn} tree {!!} stack) + → (stack : List (bt'-path A tn)) → Set n +tree+stack tree mtree [] = tree ≡ mtree -- fin case +tree+stack {n} {m} {A} {t} {.key₁} tree mtree@(bt'-leaf key₁) (bt'-left key x x₁ ∷ stack) = (mtree ≡ x) ∧ (tree+stack {n} {m} {_} {t} tree {!!} stack) +tree+stack {n} {m} {A} {t} {.key₁} tree mtree@(bt'-node {l} {r} key₁ value lmtree rmtree x₂ x₃) (bt'-left key x x₁ ∷ stack) = (mtree ≡ x) ∧ (tree+stack {n} {m} {_} {t} {{!!}} tree {!!} stack) +tree+stack {n} {m} {A} {t} {tn} tree mtree (bt'-right key x x₁ ∷ stack) = (mtree ≡ x) ∧ (tree+stack {n} {m} {_} {t} {tn} tree {!!} stack) -- tree+stack tree mtree (bt'-right key {rkey} x x₁ ∷ stack) = (mtree ≡ {!!}) ∧ (tree+stack tree {!!} stack) -- tn ≡ rkey がひつよう tree+stack≡tree : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (tree mtree : bt' A tn ) - → (stack : List (bt'-path A )) → (reverse stack) ≡ {!!} + → (stack : List (bt'-path A tn)) → (reverse stack) ≡ {!!} tree+stack≡tree tree (bt'-leaf key) stack = {!!} tree+stack≡tree tree (bt'-node key value mtree mtree₁ x x₁) stack = {!!} -bt-find' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' A tn ) → List (bt'-path A ) - → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t +bt-find' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' A tn ) → List (bt'-path A tn) + → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A key1) → t ) → t bt-find' key tr@(bt'-leaf key₁) stack next = next tr stack -- no key found bt-find' key (bt'-node key₁ value tree tree₁ x x₁) stack next with <-cmp key key₁ bt-find' key tr@(bt'-node {l} {r} key₁ value tree tree₁ x x₁) stack next | tri< a ¬b ¬c = - bt-find' key tree ( (bt'-left key {key₁} tr (<⇒≤ a) ) ∷ stack) next + bt-find' key tree ( (bt'-left key {!!} ({!!}) ) ∷ {!!}) next bt-find' key found@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri≈ ¬a b ¬c = next found stack bt-find' key tr@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri> ¬a ¬b c = - bt-find' key tree ( (bt'-right key {key₁} tr (<⇒≤ c) ) ∷ stack) next + bt-find' key tree ( (bt'-right key {!!} {!!} ) ∷ {!!}) next -bt-find-step : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' A tn ) → List (bt'-path A ) - → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t +bt-find-step : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' A tn ) → List (bt'-path A tn) + → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A key1) → t ) → t bt-find-step key tr@(bt'-leaf key₁) stack exit = exit tr stack -- no key found bt-find-step key (bt'-node key₁ value tree tree₁ x x₁) stack next = {!!} @@ -135,10 +137,10 @@ pa<a {zero} = s≤s z≤n pa<a {suc a} = s≤s pa<a -bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (value : A ) → (tree : bt' A tn ) → List (bt'-path A ) +bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (value : A ) → (tree : bt' A tn ) → List (bt'-path A {!!}) → ({key1 : ℕ } → bt' A key1 → t ) → t bt-replace' {n} {m} {A} {t} {tn} key value node stack next = bt-replace1 tn node where - bt-replace0 : {tn : ℕ } (node : bt' A tn ) → List (bt'-path A ) → t + bt-replace0 : {tn : ℕ } (node : bt' A tn ) → List (bt'-path A {!!}) → t bt-replace0 node [] = next node bt-replace0 node (bt'-left key (bt'-leaf key₁) x₁ ∷ stack) = {!!} bt-replace0 {tn} node (bt'-left key (bt'-node key₁ value x x₂ x₃ x₄) x₁ ∷ stack) = bt-replace0 {key₁} (bt'-node key₁ value node x₂ {!!} x₄ ) stack