Mercurial > hg > Gears > GearsAgda
changeset 746:4edec19e8356
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Apr 2023 08:16:02 +0900 |
parents | 9b7d706e7d0f |
children | 70ed4cbeaafb |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 44 insertions(+), 54 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Mon Apr 24 18:42:31 2023 +0900 +++ b/hoareBinaryTree1.agda Tue Apr 25 08:16:02 2023 +0900 @@ -544,17 +544,35 @@ Red : Color Black : Color -data RBtreeInvariant {n : Level} {A : Set n} : (tree : bt (Color ∧ A)) → Set n where - rb-leaf : RBtreeInvariant leaf - rb-single : (key : ℕ) → (value : A) → (c : Color) → RBtreeInvariant (node key ⟪ c , value ⟫ leaf leaf) +data RBtreeInvariant {n : Level} {A : Set n} : (tree : bt (Color ∧ A)) → (bd : ℕ) → Set n where + rb-leaf : RBtreeInvariant leaf 0 + rb-single : (key : ℕ) → (value : A) → (c : Color) → RBtreeInvariant (node key ⟪ c , value ⟫ leaf leaf) 1 + rb-right-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } + → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) d + → RBtreeInvariant (node key ⟪ Red , value ⟫ leaf (node key₁ ⟪ Black , value₁ ⟫ t t₁)) d + rb-right-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } {c : Color} + → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) d + → RBtreeInvariant (node key ⟪ Black , value ⟫ leaf (node key₁ ⟪ c , value₁ ⟫ t t₁)) (suc d) + rb-left-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } + → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) d + → RBtreeInvariant (node key₁ ⟪ Red , value ⟫ (node key ⟪ Black , value₁ ⟫ t t₁) leaf ) d + rb-left-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {d : ℕ } {c : Color} + → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) d + → RBtreeInvariant (node key₁ ⟪ Black , value ⟫ (node key ⟪ c , value₁ ⟫ t t₁) leaf) (suc d) + rb-node-red : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → {d : ℕ} + → RBtreeInvariant (node key ⟪ Black , value ⟫ t₁ t₂) d + → RBtreeInvariant (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄) d + → RBtreeInvariant (node key₁ ⟪ Red , value₁ ⟫ (node key ⟪ Black , value ⟫ t₁ t₂) (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄)) d + rb-node-black : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → {d : ℕ} + → {c c₁ : Color} + → RBtreeInvariant (node key ⟪ c , value ⟫ t₁ t₂) d + → RBtreeInvariant (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄) d + → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ (node key ⟪ c , value ⟫ t₁ t₂) (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄)) (suc d) -data replacedRBTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt (Color ∧ A) ) → Set n where - r-leaf : replacedRBTree key ⟪ ? , value ⟫ leaf (node key ⟪ ? , value ⟫ leaf leaf) - r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) - r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → k < key → replacedTree key value t2 t → replacedTree key value (node k v1 t1 t2) (node k v1 t1 t) - r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → key < k → replacedTree key value t1 t → replacedTree key value (node k v1 t1 t2) (node k v1 t t2) + +-- This one can be very difficult +-- data replacedRBTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt (Color ∧ A) ) → Set n where +-- rb-leaf : replacedRBTree key value leaf (node key ⟪ Black , value ⟫ leaf leaf) data RBTree {n : Level} (A : Set n) : (key : ℕ) → Color → (b-depth : ℕ) → Set n where rb-leaf : (key : ℕ) → RBTree A key Black 0 @@ -575,41 +593,12 @@ → RBTree A key₂ c1 d → RBTree A key₁ Black (suc d) -color : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → Color -color {n} A {k} {d} {c} rb = c - -rb-key : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → ℕ -rb-key {n} A {k} {d} {c} rb = k - -RB→bt : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → bt A -RB→bt {n} A (rb-leaf _) = leaf -RB→bt {n} A (rb-single key value _) = node key value leaf leaf -RB→bt {n} A (t-right-red key value x rb) = node key value leaf (RB→bt A rb) -RB→bt {n} A (t-right-black key value x rb) = node key value leaf (RB→bt A rb) -RB→bt {n} A (t-left-red key value x rb) = node key value (RB→bt A rb) leaf -RB→bt {n} A (t-left-black key value x rb) = node key value (RB→bt A rb) leaf -RB→bt {n} A (t-node-red key value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) -RB→bt {n} A (t-node-black key value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) +color : {n : Level} (A : Set n) → (rb : bt (A ∧ Color)) → Color +color {n} A {k} {d} {c} rb = ? -rbt-depth : {n : Level} (A : Set n) {key : ℕ} {c : Color} {d : ℕ} → RBTree A key c d → ℕ -rbt-depth A (rb-leaf _) = zero -rbt-depth A (rb-single _ value _) = 1 -rbt-depth A (t-right-red _ value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-right-black _ value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-left-red _ value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-left-black _ value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-node-red _ value x x₁ ab ab₁) = suc (Data.Nat._⊔_ (rbt-depth A ab ) (rbt-depth A ab₁ )) -rbt-depth A (t-node-black _ value x x₁ ab ab₁) = suc (Data.Nat._⊔_ (rbt-depth A ab ) (rbt-depth A ab₁ )) - -rbt-key : {n : Level} (A : Set n) {key : ℕ} {c : Color} {d : ℕ} → RBTree A key c d → Maybe ℕ -rbt-key {n} A (rb-leaf _) = nothing -rbt-key {n} A (rb-single key value _) = just key -rbt-key {n} A (t-right-red key value x rb) = just key -rbt-key {n} A (t-right-black key value x rb) = just key -rbt-key {n} A (t-left-red key value x rb) = just key -rbt-key {n} A (t-left-black key value x rb) = just key -rbt-key {n} A (t-node-red key value x x₁ rb rb₁) = just key -rbt-key {n} A (t-node-black key value x x₁ rb rb₁) = just key +RB→bt : {n : Level} (A : Set n) → (rb : bt (A ∧ Color)) → bt A +RB→bt {n} A leaf = leaf +RB→bt {n} A (node key ⟪ c , value ⟫ x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) data ParentGrand {n : Level} {A : Set n} (self : bt A) : (parent grand : bt A) → Set n where s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } @@ -621,22 +610,23 @@ s2-1s2p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } → parent ≡ node kp vp n1 self → grand ≡ node kg vg n2 parent → ParentGrand self parent grand +-- with color data rotatedTree {n : Level} {A : Set n} : (before after : bt A ) → Set n where rr-node : {t : bt A} → rotatedTree t t - -- a b - -- b c d a - -- d c - rr-right : {ka kb : ℕ } {va vb : A} → {ta tb tc ta1 tb1 tc1 : bt A} + -- a b + -- b c d a + -- d e e c + rr-right : {ka kb : ℕ } {va vb : A} → {c c₁ d d₁ e e₁ : bt A} → ka < kb - → rotatedTree ta ta1 → rotatedTree tb tb1 → rotatedTree tc tc1 - → rotatedTree (node ka va (node kb vb ta tb) tc) (node kb vb ta1 (node ka va tb1 tc1) ) + → rotatedTree d d₁ → rotatedTree e e₁ → rotatedTree c c₁ + → rotatedTree (node ka va (node kb vb d e) tc) (node kb vb d₁ (node ka va e₁ c₁) ) -- b a -- d a b c - -- c d - rr-left : {ka kb : ℕ } {va vb : A} → {ta tb tc ta1 tb1 tc1 : bt A} + -- e c d e + rr-left : {ka kb : ℕ } {va vb : A} → {c c₁ d d₁ e e₁ : bt A} → ka < kb - → rotatedTree ta ta1 → rotatedTree tb tb1 → rotatedTree tc tc1 - → rotatedTree (node kb vb ta (node ka va tb tc) ) (node ka va (node kb vb ta1 tb1) tc1) + → rotatedTree d d₁ → rotatedTree e e₁ → rotatedTree c c₁ + → rotatedTree (node kb vb d (node ka va e c) ) (node ka va (node kb vb d₁ e₁) c₁) record PG {n : Level } (A : Set n) (stack : List (bt A)) : Set n where field