Mercurial > hg > Gears > GearsAgda
changeset 686:4efb74d28d6a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Nov 2021 09:35:22 +0900 |
parents | 01c16d4d6d8c |
children | 5af178095ac8 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 12 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Tue Nov 30 05:52:13 2021 +0900 +++ b/hoareBinaryTree.agda Tue Nov 30 09:35:22 2021 +0900 @@ -296,33 +296,25 @@ replaceP {n} {_} {A} key value {tree} repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤) - Post with replacePR.si Pre | inspect replacePR.si Pre - ... | s-left x t | record { eq = eq} = {!!} -- can't happen - ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si | record { eq = refl } = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl11 ; ci = lift tt } where + Post with replacePR.si Pre | inspect replacePR.si Pre | replacePR.ri Pre + ... | s-left x t | record { eq = refl } | ri = {!!} -- can't happen + ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si | record { eq = refl } | ri = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) repl09 = si-property1 si repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) repl10 with si-property1 si ... | refl = si - repl03 : s-right {_} {_} {_} {_} {_} {tree₁} {key₂} {v1} lt si ≡ replacePR.si Pre - → child-replaced key value (node key₁ value₁ left right ∷ tree1 ∷ st1) (node key₁ value₁ left right) (replacePR.tree0 Pre) (replacePR.si Pre) ≡ left - repl03 refl = refl - repl04 : (si : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) ) - → tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) → child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) si ≡ node key₁ value₁ left right - repl04 s-single refl = {!!} - repl04 (s-right lt2 si2) refl = {!!} - repl04 (s-left lt2 si2) refl = refl - repl07 : (si : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) ) - → node key₁ value₁ (child-replaced key value (node key₁ value₁ left right ∷ tree1 ∷ st1) (node key₁ value₁ left right) (replacePR.tree0 Pre) (replacePR.si Pre)) right - ≡ child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) si - repl07 = {!!} - repl11 : replacedTree key value (child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) repl10 ) (node key₁ value₁ repl right) - repl11 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right)) (repl07 repl10) ( r-left a (replacePR.ri Pre)) repl12 : replacedTree key value (child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) repl10 ) (node key₁ value₁ repl right) repl12 with repl09 | repl10 - ... | refl | s-single = {!!} - ... | refl | s-right lt2 si2 = {!!} - ... | refl | s-left lt2 si2 = r-left a (subst (λ k → replacedTree key value k repl ) (repl03 refl) (replacePR.ri Pre)) + ... | refl | s-single = {!!} where -- key ≡ key₂ → ⊥ -- child-replaced ≡ leaf + repl03 : child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) s-single ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) + repl03 = refl + ... | refl | s-right lt2 si2 = {!!} where -- key₂ < key, key₂ < key₁, key < key₁ -- child-replaced ≡ right + repl04 : child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) (s-right lt2 si2) ≡ tree₁ + repl04 = refl + ... | refl | s-left lt2 si2 = r-left a (replacePR.ri Pre) where + repl05 : child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) (s-left lt2 si2) ≡ node key₁ value₁ left right + repl05 = refl ... | tri≈ ¬a b ¬c = next key value {{!!}} (node key₁ value left right ) st {!!} ≤-refl -- can't happen ... | tri> ¬a ¬b c = next key value {{!!}} (node key₁ value₁ left tree ) st {!!} ≤-refl