Mercurial > hg > Gears > GearsAgda
changeset 509:51f0d5e5d1e5
stack proof on indeterminate stack state
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Jan 2018 18:22:14 +0900 |
parents | 528c31b045de |
children | 647716041772 |
files | src/parallel_execution/stack.agda |
diffstat | 1 files changed, 26 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/stack.agda Tue Jan 02 02:23:41 2018 +0900 +++ b/src/parallel_execution/stack.agda Wed Jan 03 18:22:14 2018 +0900 @@ -120,18 +120,28 @@ emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} -createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} {a} {t} (SingleLinkedStack a) -createSingleLinkedStack = record { - stack = emptySingleLinkedStack ; - stackMethods = record { +----- +-- Basic stack implementations are specifications of a Stack +-- +singleLinkedStackSpec : {n m : Level } {t : Set m } {a : Set n} -> StackMethods {n} {m} {a} {t} (SingleLinkedStack a) +singleLinkedStackSpec = record { push = pushSingleLinkedStack ; pop = popSingleLinkedStack ; pop2 = pop2SingleLinkedStack ; get = getSingleLinkedStack ; get2 = get2SingleLinkedStack - } } +createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} {a} {t} (SingleLinkedStack a) +createSingleLinkedStack = record { + stack = emptySingleLinkedStack ; + stackMethods = singleLinkedStackSpec + } + +---- +-- +-- proof of properties ( concrete cases ) +-- test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} test01 stack _ with (top stack) @@ -180,23 +190,21 @@ ------ -- +-- proof of properties with indefinite state of stack +-- -- this should be proved by properties of the stack inteface, not only by the implementation, -- and the implementation have to provides the properties. -- --- we cannot write "s ≡ s3", since level of the Set does not fit , but we cant use stack s ≡ stack s3 +-- we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok. +-- anyway some implementations may result s != s3 -- --- push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : Stack (SingleLinkedStack D) ) -> --- pushStack s x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )))) --- push->push->pop2 {l} {D} x y s = {!!} --- where --- t0 : (s3 : Stack {_} {succ l} {D} {Set l} (SingleLinkedStack D)) (x1 y1 : Maybe D) -> (stack s ≡ stack s3 ) -> (Just x ≡ x1 ) -> (Just y ≡ y1 ) --- -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) )) --- t0 s3 x1 y1 refl refl refl = record { pi1 = refl ; pi2 = record { pi1 = refl ; pi2 = refl } } --- t1 : (s2 : Stack (SingleLinkedStack D)) -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )) --- t1 s2 = {!!} --- t2 : (s1 : Stack (SingleLinkedStack D)) (x1 y1 : Maybe D) -> --- pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) ) )) --- t2 s1 = {!!} + +stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} {D} {t} ( SingleLinkedStack D ) +stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } + +push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) -> + pushStack ( stackInSomeState s ) x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )) +push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } id : {n : Level} {A : Set n} -> A -> A