Mercurial > hg > Gears > GearsAgda
changeset 515:54ff7a97aec1
fix findNode in Agda
author | ryokka |
---|---|
date | Thu, 04 Jan 2018 19:45:32 +0900 |
parents | f86da73d611e |
children | d595acd16550 |
files | src/parallel_execution/RedBlackTree.agda src/parallel_execution/stack.agda |
diffstat | 2 files changed, 54 insertions(+), 51 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/RedBlackTree.agda Thu Jan 04 18:10:15 2018 +0900 +++ b/src/parallel_execution/RedBlackTree.agda Thu Jan 04 19:45:32 2018 +0900 @@ -42,55 +42,58 @@ record RedBlackTree {n m : Level } {t : Set m} (a k si : Set n) : Set (m Level.⊔ n) where field root : Maybe (Node a k) - nodeStack : Stack {n} {m} {{!!}} {t} si + nodeStack : Stack {n} {m} (Node a k) {t} si compare : k -> k -> CompareResult {n} open RedBlackTree open Stack -insertCase3 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> a -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase3 = {!!} -- tree datum parent grandparent next -insertCase2 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> a -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase2 tree datum parent grandparent next with (color parent) -... | Red = insertCase3 tree datum parent grandparent next -... | Black = next (record { root = {!!}; nodeStack = {!!}}) - -insertCase1 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> a -> (Maybe (Node a k) ) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase1 tree datum Nothing grandparent next = next (record { root = {!!}; nodeStack = {!!} }) -insertCase1 tree datum (Just parent) grandparent next = insertCase2 tree datum parent grandparent next - -insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertNode tree datum next = get2Stack (nodeStack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; nodeStack = s }) datum d1 d2 next) +insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +insertNode tree s datum next = get2Stack s (\ s d1 d2 -> {!!} tree s datum d1 d2 next) -findNode : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -findNode {n} {m} {a} {k} {si} {t} tree n0 n1 next = pushStack (nodeStack tree) n1 (\ s -> findNode1 (record tree {nodeStack = s }) n0 n1 next) +findNode : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t +findNode {n} {m} {a} {k} {si} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) where - findNode1 : RedBlackTree {n} {m} {t} a k si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t - findNode1 tree n0 n1 next with (compare tree (key n0) (key n1)) - ... | EQ = popStack (nodeStack tree) (\s d -> {!!} d (record tree { root = Just (record n {node = datum}); stack = s }) next) - ... | GT = {!!} tree datum (right n) next - ... | LT = findNode2 tree {!!} (left n1) next + findNode2 : Stack (Node a k) si -> (Maybe (Node a k)) -> t + findNode2 s Nothing = next tree s n0 + findNode2 s (Just n) = findNode tree s n0 n next + findNode1 : Stack (Node a k) si -> (Node a k) -> t + findNode1 s n1 with (compare tree (key n0) (key n1)) + ... | EQ = next tree s n0 + ... | GT = findNode2 s (right n1) + ... | LT = findNode2 s (left n1) where - findNode2 : RedBlackTree {n} {m} {t} a k si -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t - findNode2 tree datum Nothing next = insertNode tree {!!} next - findNode2 tree datum (Just n) next = findNode (record tree {root = Just n}) datum n next - findNode3 : RedBlackTree {n} {m} {t} a k si -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> t) -> t - findNode3 tree nothing next = next tree - findNode3 tree (Just n) next = - popStack (nodeStack tree) (\s d -> findNode3 tree d {!!} ) + -- findNode3 : Stack (Node a k) si -> (Maybe (Node a k)) -> t + -- findNode3 s nothing = next tree s n0 + -- findNode3 s (Just n) = + -- popStack (nodeStack tree) (\s d -> findNode3 s d) -putRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -putRedBlackTree tree datum next with (root tree) -... | Nothing = insertNode tree datum next -... | Just n = findNode tree {!!} n (\ tree1 -> insertNode tree1 datum next) +leafNode : {n m : Level } {a k si : Set n} {t : Set m} -> k -> a -> Node a k +leafNode k1 value = record { + key = k1 ; + value = value ; + right = Nothing ; + left = Nothing ; + color = Black + } -getRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> (Code : RedBlackTree {n} {m} {t} a k si -> (Maybe a) -> t) -> t -getRedBlackTree tree cs with (root tree) -... | Nothing = cs tree Nothing -... | Just d = cs stack1 (Just data1) +putRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +putRedBlackTree {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) +... | Nothing = next (record tree {root = Just (leafNode k1 value) }) +... | Just n2 = findNode tree (nodeStack tree) (leafNode {n} {m} {a} {k} {si} {t} k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next) + +getRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> (RedBlackTree {n} {m} {t} a k si -> (Maybe (Node a k)) -> t) -> t +getRedBlackTree {_} {_} {a} {k} {_} {t} tree k1 cs = checkNode (root tree) where - data1 = {!!} - stack1 = {!!} + checkNode : Maybe (Node a k) -> t + checkNode Nothing = cs tree Nothing + checkNode (Just n) = search n + where + search : Node a k -> t + search n with compare tree k1 (key n) + search n | LT = checkNode (left n) + search n | GT = checkNode (right n) + search n | EQ = cs tree (Just n)
--- a/src/parallel_execution/stack.agda Thu Jan 04 18:10:15 2018 +0900 +++ b/src/parallel_execution/stack.agda Thu Jan 04 19:45:32 2018 +0900 @@ -21,7 +21,7 @@ Nothing : Maybe a Just : a -> Maybe a -record StackMethods {n m : Level } {a : Set n } {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where +record StackMethods {n m : Level } (a : Set n ) {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where field push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t @@ -30,19 +30,19 @@ get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t open StackMethods -record Stack {n m : Level } {a : Set n } {t : Set m } (si : Set n ) : Set (m Level.⊔ n) where +record Stack {n m : Level } (a : Set n ) {t : Set m } (si : Set n ) : Set (m Level.⊔ n) where field stack : si - stackMethods : StackMethods {n} {m} {a} {t} si - pushStack : a -> (Stack si -> t) -> t + stackMethods : StackMethods {n} {m} a {t} si + pushStack : a -> (Stack a si -> t) -> t pushStack d next = push (stackMethods ) (stack ) d (\s1 -> next (record {stack = s1 ; stackMethods = stackMethods } )) - popStack : (Stack si -> Maybe a -> t) -> t + popStack : (Stack a si -> Maybe a -> t) -> t popStack next = pop (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 ) - pop2Stack : (Stack si -> Maybe a -> Maybe a -> t) -> t + pop2Stack : (Stack a si -> Maybe a -> Maybe a -> t) -> t pop2Stack next = pop2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2) - getStack : (Stack si -> Maybe a -> t) -> t + getStack : (Stack a si -> Maybe a -> t) -> t getStack next = get (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 ) - get2Stack : (Stack si -> Maybe a -> Maybe a -> t) -> t + get2Stack : (Stack a si -> Maybe a -> Maybe a -> t) -> t get2Stack next = get2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2) open Stack @@ -123,7 +123,7 @@ ----- -- Basic stack implementations are specifications of a Stack -- -singleLinkedStackSpec : {n m : Level } {t : Set m } {a : Set n} -> StackMethods {n} {m} {a} {t} (SingleLinkedStack a) +singleLinkedStackSpec : {n m : Level } {t : Set m } {a : Set n} -> StackMethods {n} {m} a {t} (SingleLinkedStack a) singleLinkedStackSpec = record { push = pushSingleLinkedStack ; pop = popSingleLinkedStack @@ -132,7 +132,7 @@ ; get2 = get2SingleLinkedStack } -createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} {a} {t} (SingleLinkedStack a) +createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} a {t} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; stackMethods = singleLinkedStackSpec @@ -165,7 +165,7 @@ -- after push 1 and 2, pop2 get 1 and 2 -testStack02 : {m : Level } -> ( Stack (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} +testStack02 : {m : Level } -> ( Stack ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} testStack02 cs = pushStack createSingleLinkedStack 1 ( \s -> pushStack s 2 cs) @@ -178,7 +178,7 @@ testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False -testStack03 : {m : Level } -> Stack (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} +testStack03 : {m : Level } -> Stack ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} testStack03 s cs = pop2Stack s ( \s d1 d2 -> cs d1 d2 ) @@ -199,7 +199,7 @@ -- anyway some implementations may result s != s3 -- -stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} {D} {t} ( SingleLinkedStack D ) +stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t} ( SingleLinkedStack D ) stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) ->