Mercurial > hg > Gears > GearsAgda
changeset 501:55077dd40a51
stack.agda comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jan 2018 18:32:20 +0900 |
parents | 6d984ea42fd2 |
children | 8d997f0c9b2c |
files | src/parallel_execution/stack.agda |
diffstat | 1 files changed, 21 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/stack.agda Mon Jan 01 11:19:14 2018 +0900 +++ b/src/parallel_execution/stack.agda Mon Jan 01 18:32:20 2018 +0900 @@ -8,11 +8,11 @@ ex : 1 + 2 ≡ 3 ex = refl -data Bool {n : Level } : Set (succ n) where +data Bool {n : Level } : Set n where True : Bool False : Bool -record _∧_ {n : Level } {a b : Set n} : Set n where +record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where field pi1 : a pi2 : b @@ -31,20 +31,20 @@ get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t open Stack -pushStack : {n : Level } {t : Set (succ n)} {a si : Set n} -> Stack si -> a -> (Stack si -> t) -> t -pushStack {t} {a} s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) +pushStack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> a -> (Stack si -> t) -> t +pushStack s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) -popStack : {n : Level } { t : Set (succ n)} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t -popStack {t} {a} s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) +popStack : {n m : Level } { t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t +popStack s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) -pop2Stack : {n : Level } { t : Set (succ n)} { a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t -pop2Stack {t} {a} s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) +pop2Stack : {n m : Level } { t : Set m} { a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t +pop2Stack s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) -getStack : {n : Level } {t : Set (succ n)} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t -getStack {t} {a} s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) +getStack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t +getStack s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) -get2Stack : {n : Level } {t : Set (succ n)} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t -get2Stack {t} {a} s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) +get2Stack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t +get2Stack s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) data Element {n : Level } (a : Set n) : Set n where @@ -146,13 +146,13 @@ lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False lemma = refl -testStack01 : {n : Level } {a : Set n} -> a -> Bool +testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m} testStack01 v = pushStack createSingleLinkedStack v ( \s -> popStack s (\s1 d1 -> True)) -- after push 1 and 2, pop2 get 1 and 2 -testStack02 : ( Stack (SingleLinkedStack ℕ) -> Bool) -> Bool +testStack02 : {m : Level } -> ( Stack (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} testStack02 cs = pushStack createSingleLinkedStack 1 ( \s -> pushStack s 2 cs) @@ -165,7 +165,7 @@ testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False -testStack03 : Stack (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool ) -> Bool +testStack03 : {m : Level } -> Stack (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} testStack03 s cs = pop2Stack s ( \s d1 d2 -> cs d1 d2 ) @@ -175,6 +175,12 @@ testStack05 : testStack04 ≡ True testStack05 = refl +------ +-- push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : Stack (SingleLinkedStack D) ) -> +-- pushStack s x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )))) +-- push->push->pop2 {l} {D} x y s = {!!} + + id : {n : Level} {A : Set n} -> A -> A id a = a