Mercurial > hg > Gears > GearsAgda
changeset 618:5702800c79bc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Nov 2021 18:35:31 +0900 |
parents | bae54f556438 |
children | a3fbc9b57015 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 36 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Nov 07 13:08:19 2021 +0900 +++ b/hoareBinaryTree.agda Sun Nov 07 18:35:31 2021 +0900 @@ -35,7 +35,7 @@ bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ bt-depth leaf = 0 -bt-depth (node key value t t₁) = Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ ) +bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ )) find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t @@ -179,23 +179,43 @@ insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ insertTreeSpec0 _ _ _ = tt +record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) (C : Set n) : Set n where + field + ti : treeInvariant tree + si : stackInvariant tree stack + opt : C + opt1 : C → C + findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) → {Cond : bt A → List (bt A) → Set n} - → (Pre : Cond tree stack ) - → (next : (tree1 : bt A) → (stack1 : List (bt A)) → Cond tree1 stack1 → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → Cond tree1 stack1 → t) → t -findPP key leaf tree0 st Pre exit = exit leaf tree0 st + → (Pre : bt A → List (bt A) → findPR tree stack (Cond tree stack) ) + → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (Cond tree1 stack1) → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (Cond tree1 stack1) → t) → t +findPP key leaf st Pre next exit = exit leaf st (Pre leaf st ) findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ -findPP key n st c _ exit | tri≈ ¬a b ¬c = exit n st c -- c : Cond (node key₁ v tree tree₁) st -findPP key n@(node key₁ v tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (n ∷ st) {!!} {!!} -- Cond n st → Cond tree (n ∷ st) -findPP key n@(node key₁ v tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} {!!} -- Cond n st → Cond tree₁ (n ∷ st) +findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (P n st) +findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = next tree (n ∷ st) (record {ti = {!!} ; si = {!!} ; opt = {!!} ; opt1 = id } ) findPP1 where -- Cond n st → Cond tree (n ∷ st) + findPP0 : {!!} + findPP0 = {!!} + findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) + findPP1 = {!!} +findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) + findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) + findPP2 = {!!} -record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where - field - ti : treeInvariant tree - si : stackInvariant tree stack - +insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree + → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t +insertTreePP {n} {m} {A} {t} tree key value P exit = + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) {!!} } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} + $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) + $ λ t s P → replaceNodeP key value t {!!} + $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) + {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } + (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ + $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) P1 + (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit + -- findP key tree stack = findPP key tree stack {findPR} → record { ti = tree-invariant tree ; si stack-invariant tree stack } → record findP-contains {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where @@ -204,14 +224,13 @@ value1 : A tree1 : bt A ci : replacedTree key1 value1 tree tree1 - R : findPR tree stack -containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → replacedTree key value tree tree1 → ⊤ +containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ containsTree {n} {m} {A} {t} tree tree1 key value P RT = TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p)) - ⟪ tree1 , [] ⟫ record { key1 = key ; value1 = value ; tree1 = tree1 ; ci = {!!} ; R = record { ti = {!!} ; si = {!!} } } - $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) + ⟪ tree1 , [] ⟫ record { key1 = key ; value1 = value ; tree1 = tree ; ci = RT ; R = record { ti = P ; si = lift tt } } + $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) $ λ t s P → insertTreeSpec0 t value {!!} insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤