Mercurial > hg > Gears > GearsAgda
changeset 776:576b35b1d2d7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 May 2023 13:01:13 +0900 |
parents | fb74ba4fa38e |
children | 8e5159a02b76 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 18 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Thu May 11 17:52:58 2023 +0900 +++ b/hoareBinaryTree1.agda Fri May 12 13:01:13 2023 +0900 @@ -731,10 +731,11 @@ → RBtreeInvariant tree ds ∧ RBtreeInvariant (PG.parent pg) dp ∧ RBtreeInvariant (PG.grand pg) dg PGtoRBinvariant = {!!} -findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt (Color ∧ A) ) - → {d : ℕ} → RBtreeInvariant tree d - → (exit : (current : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) - → RBI key value tree current stack → t ) → t +findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree0 : bt (Color ∧ A) ) + → {d : ℕ} → RBtreeInvariant tree0 d + → (exit : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack + → {d1 : ℕ} → RBtreeInvariant tree1 d1 + → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t findRBT = {!!} rotateLeft : {n m : Level} {A : Set n} {t : Set m} @@ -742,7 +743,7 @@ → (orig tree : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (r : RBI key value orig tree stack ) - → (next : (tree1 (bt (Color ∧ A))) → (stack1 : List (bt (Color ∧ A))) + → (next : (current : bt (Color ∧ A)) → (stack1 : List (bt (Color ∧ A))) → (r : RBI key value orig current stack1 ) → length stack1 < length stack → t ) → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) @@ -751,8 +752,8 @@ → t ) → t rotateLeft {n} {m} {A} {t} key value = ? where rotateLeft1 : t - rotateLeft1 with stackToPG ? orig stack si - ... | case1 x = exit {!!} {!!} {!!} {!!} rr + rotateLeft1 with stackToPG ? ? ? ? + ... | case1 x = ? -- {!!} {!!} {!!} {!!} rr ... | case2 (case1 x) = {!!} ... | case2 (case2 pg) = {!!} @@ -761,8 +762,8 @@ → (orig tree : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (r : RBI key value orig tree stack ) - → (next : (stack1 : List (bt (Color ∧ A))) - → (r : RBI key value orig stack1 ) + → (next : (current : bt (Color ∧ A)) → (stack1 : List (bt (Color ∧ A))) + → (r : RBI key value orig current stack1 ) → length stack1 < length stack → t ) → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) → stack1 ≡ (orig ∷ []) @@ -780,7 +781,7 @@ → (orig tree : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (r : RBI key value orig tree stack ) - → (next : (tree1 (bt (Color ∧ A))) (stack1 : List (bt (Color ∧ A))) + → (next : (tree1 : (bt (Color ∧ A))) → (stack1 : List (bt (Color ∧ A))) → (r : RBI key value orig tree1 stack1 ) → length stack1 < length stack → t ) → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) @@ -789,7 +790,7 @@ → t ) → t insertCase5 {n} {m} {A} {t} key value = ? where insertCase51 : t - insertCase51 with stackToPG ? orig stack ? + insertCase51 with stackToPG ? ? ? ? ... | case1 eq = {!!} ... | case2 (case1 eq ) = {!!} ... | case2 (case2 pg) with PG.pg pg @@ -806,15 +807,15 @@ replaceRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) - → (orig repl : bt (Color ∧ A)) + → (orig tree : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) - → (r : RBI key value orig stack ) - → (next : (stack1 : List (bt (Color ∧ A))) - → (r : RBI key value orig stack1 ) + → (r : RBI key value orig tree stack ) + → (next : (tree1 : (bt (Color ∧ A))) → (stack1 : List (bt (Color ∧ A))) + → (r : RBI key value orig tree1 stack1 ) → length stack1 < length stack → t ) → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) → stack1 ≡ (orig ∷ []) - → RBI key value orig stack1 + → RBI key value orig repl stack1 → t ) → t replaceRBP {n} {m} {A} {t} key value orig stack r next exit = ? where insertCase2 : (tree parent uncle grand : bt (Color ∧ A)) @@ -850,7 +851,7 @@ -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) insertCase1 : t - insertCase1 with stackToPG ? orig stack ? + insertCase1 with stackToPG ? orig ? ? ... | case1 eq = ? -- exit rot repl rbir (subst (λ k → rotatedTree k rot) (stackCase1 si eq) roti) ri ... | case2 (case1 eq ) = ? where insertCase12 : (to : bt (Color ∧ A)) → {d : ℕ} → RBtreeInvariant orig d → to ≡ orig