Mercurial > hg > Gears > GearsAgda
changeset 538:5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
author | ryokka |
---|---|
date | Wed, 10 Jan 2018 17:38:24 +0900 |
parents | fffeaf0b0024 |
children | 39d465c20e5a |
files | RedBlackTree.agda redBlackTreeTest.agda stackTest.agda |
diffstat | 3 files changed, 42 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/RedBlackTree.agda Wed Jan 10 15:44:13 2018 +0900 +++ b/RedBlackTree.agda Wed Jan 10 17:38:24 2018 +0900 @@ -52,18 +52,16 @@ -- put new node at parent node, and rebuild tree to the top -- {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html -replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -replaceNode {n} {m} {t} {a} {k} {si} tree s parent n0 next = popStack s ( - \s grandParent -> replaceNode1 s grandParent ( compare tree (key parent) (key n0) ) ) - where - replaceNode1 : Stack (Node a k) si -> Maybe ( Node a k ) -> CompareResult -> t - replaceNode1 s Nothing LT = next ( record tree { root = Just ( record parent { left = Just n0 ; color = Black } ) } ) - replaceNode1 s Nothing GT = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) - replaceNode1 s Nothing EQ = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) - replaceNode1 s (Just grandParent) result with result - ... | LT = replaceNode tree s grandParent ( record parent { left = Just n0 } ) next - ... | GT = replaceNode tree s grandParent ( record parent { right = Just n0 } ) next - ... | EQ = next tree +replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +replaceNode {n} {m} {t} {a} {k} {si} tree s n0 next = popStack s ( + \s parent -> replaceNode1 s parent) + where + replaceNode1 : Stack (Node a k) si -> Maybe ( Node a k ) -> t + replaceNode1 s Nothing = next ( record tree { root = Just (record n0 { color = Black}) } ) + replaceNode1 s (Just n1) with compare tree (key n1) (key n0) + ... | LT = replaceNode tree s ( record n1 { left = Just n0 } ) next + ... | GT = replaceNode tree s ( record n1 { right = Just n0 } ) next + ... | EQ = next tree rotateRight : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Maybe (Node a k) -> Maybe (Node a k) -> @@ -160,11 +158,11 @@ ... | Black = insertCase4 tree s n0 parent grandParent next insertCase2 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t insertCase2 s n0 parent grandParent with color parent - ... | Black = replaceNode tree s parent n0 next + ... | Black = replaceNode tree s n0 next ... | Red = insertCase3 s n0 parent grandParent insertCase1 n0 s Nothing Nothing = next tree insertCase1 n0 s Nothing (Just grandParent) = next tree - insertCase1 n0 s (Just parent) Nothing = replaceNode tree s parent (colorNode n0 Black) next + insertCase1 n0 s (Just parent) Nothing = replaceNode tree s (colorNode n0 Black) next insertCase1 n0 s (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent ---- @@ -205,7 +203,7 @@ checkNode (Just n) = search n where search : Node a k -> t - search n with compare tree k1 (key n) + search n with compare tree (key n) k1 search n | LT = checkNode (left n) search n | GT = checkNode (right n) search n | EQ = cs tree (Just n)
--- a/redBlackTreeTest.agda Wed Jan 10 15:44:13 2018 +0900 +++ b/redBlackTreeTest.agda Wed Jan 10 17:38:24 2018 +0900 @@ -5,9 +5,6 @@ open import Level hiding (zero) open import Data.Nat -open import Relation.Binary.PropositionalEquality -open import Relation.Binary.Core - open Tree open Node @@ -19,7 +16,7 @@ putTree1 : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t putTree1 {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) -... | Just n2 = clearStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n2 n1 next)) +... | Just n2 = clearStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n1 next)) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core @@ -41,12 +38,25 @@ \t x -> check1 x 1 ≡ True ))) test2 = refl --- test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 --- $ \t -> putTree1 t 2 2 --- $ \t -> getRedBlackTree t 2 --- $ \t x -> check1 x 2 ≡ True --- test3 = {!!} +test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 + $ \t -> putTree1 t 2 2 + $ \t -> getRedBlackTree t 2 + $ \t x -> check1 x 2 ≡ True +test3 = refl test4 : putTree1 {_} {_} {ℕ} {ℕ} ( createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ \t -> putTree1 t 2 2 $ \t -> - root t ≡ Just (record { key = 1 ; value = 1 ; left = Nothing ; right = Just ( record { key = 2 ; value = 2 } ) } ) + root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} ) test4 = refl + + + +-- test5 : Maybe (Node ℕ ℕ) +-- test5 = putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 +-- $ \t -> putTree1 t 2 2 +-- $ \t -> putTree1 t 3 3 +-- $ \t -> getRedBlackTree t 3 +-- $ \t x -> root t + +-- test51 : putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ \t -> +-- putTree1 t 2 2 $ \t -> putTree1 t 3 3 $ \t -> root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} ) +-- test51 = refl
--- a/stackTest.agda Wed Jan 10 15:44:13 2018 +0900 +++ b/stackTest.agda Wed Jan 10 17:38:24 2018 +0900 @@ -61,6 +61,15 @@ testStack05 : testStack04 ≡ True testStack05 = refl +testStack06 : {m : Level } -> Maybe (Element ℕ) +testStack06 = pushStack createSingleLinkedStack 1 ( + \s -> pushStack s 2 (\s -> top (stack s))) + +testStack07 : {m : Level } -> Maybe (Element ℕ) +testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 ( + \s -> pushSingleLinkedStack s 2 (\s -> top s)) + + ------ -- -- proof of properties with indefinite state of stack