Mercurial > hg > Gears > GearsAgda
changeset 621:6861bcb9c54d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Nov 2021 16:36:26 +0900 |
parents | fe8c2d82c05c |
children | a1849f24fa66 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 25 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Nov 07 23:00:57 2021 +0900 +++ b/hoareBinaryTree.agda Mon Nov 08 16:36:26 2021 +0900 @@ -98,15 +98,13 @@ treeInvariantTest1 : treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) treeInvariantTest1 = {!!} -data stackInvariant {n : Level} {A : Set n} : (tree0 : bt A) → (stack : List (bt A)) → Set n where - s-nil : stackInvariant leaf [] - s-single : (tree : bt A) → stackInvariant tree (tree ∷ [] ) - s-right : (tree : bt A) → {key : ℕ } → {value : A } { left : bt A} → stackInvariant (node key value left tree ) (tree ∷ node key value left tree ∷ []) - s-left : (tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → stackInvariant (node key value tree right) (tree ∷ node key value tree right ∷ []) +data stackInvariant {n : Level} {A : Set n} : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where + s-nil : stackInvariant leaf leaf [] + s-single : (tree : bt A) → stackInvariant tree tree (tree ∷ [] ) s-< : (tree0 tree : bt A) → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)} - → stackInvariant tree0 (tree ∷ st ) → stackInvariant tree0 ((node key value left tree ) ∷ tree ∷ st ) - s-> : (tree0 tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} - → stackInvariant tree0 (tree ∷ st ) → stackInvariant tree0 ((node key value tree right ) ∷ tree ∷ st ) + → stackInvariant (node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant tree tree0 (tree ∷ node key value left tree ∷ st ) + s-> : (tree0 tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} + → stackInvariant (node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant tree tree0 (tree ∷ node key value tree right ∷ st ) data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where r-leaf : replacedTree key value leaf (node key value leaf leaf) @@ -117,9 +115,9 @@ → k < key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t1 t) (node k v t2 t) ) findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) - → treeInvariant tree ∧ stackInvariant tree0 stack - → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree0 stack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree0 stack → t ) → t + → treeInvariant tree ∧ stackInvariant tree tree0 stack + → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → t ) → t findP key leaf tree0 st Pre _ exit = exit leaf tree0 st {!!} findP key (node key₁ v tree tree₁) tree0 st Pre next exit with <-cmp key key₁ findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st {!!} @@ -132,8 +130,8 @@ replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} replaceP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack ∧ replacedTree key value tree repl - → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) + → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant repl tree stack ∧ replacedTree key value tree repl + → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t replaceP key value tree repl [] Pre next exit = exit tree repl {!!} replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!} @@ -177,14 +175,14 @@ insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t insertTreeP {n} {m} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) $ λ t _ s P → replaceNodeP key value t (proj1 P) $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) - {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } + {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫ - $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) P1 - (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit + $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} + (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A top-value leaf = nothing @@ -197,24 +195,24 @@ field tree0 : bt A ti : treeInvariant tree - si : stackInvariant tree0 stack + si : stackInvariant tree tree0 stack findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → (Pre : bt A → List (bt A) → findPR tree stack ) + → (Pre : findPR tree stack ) → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → t) → t -findPP key leaf st Pre next exit = exit leaf st (Pre leaf st ) +findPP key leaf st Pre next exit = exit leaf st Pre findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ -findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (P n st) +findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st P findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = - next tree (n ∷ st) (record {ti = findPP0 tree tree₁ (findPR.ti (Pre n st)) ; si = findPP2 st (findPR.si (Pre n st))} ) findPP1 where - tree0 = findPR.tree0 (Pre n st) + next tree (n ∷ st) (record {ti = findPP0 tree tree₁ (findPR.ti Pre ) ; si = findPP2 st (findPR.si Pre)} ) findPP1 where + tree0 = findPR.tree0 Pre findPP0 : (tree tree₁ : bt A) → treeInvariant ( node key₁ v tree tree₁ ) → treeInvariant tree findPP0 leaf t x = {!!} findPP0 (node key value tree tree₁) leaf x = proj1 {!!} findPP0 (node key value tree tree₁) (node key₁ value₁ t t₁) x = proj1 {!!} - findPP2 : (st : List (bt A)) → stackInvariant tree0 st → stackInvariant tree0 (node key₁ v tree tree₁ ∷ st) + findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) findPP2 [] = {!!} findPP2 (leaf ∷ st) x = {!!} findPP2 (node key value leaf leaf ∷ st) x = {!!} @@ -234,10 +232,10 @@ $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) $ λ t s P → replaceNodeP key value t {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) - {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } + {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ - $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) P1 - (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit + $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} + (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit -- findP key tree stack = findPP key tree stack {findPR} → record { ti = tree-invariant tree ; si stack-invariant tree stack } →