Mercurial > hg > Gears > GearsAgda
changeset 648:6c3d50b30bea
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Nov 2021 20:07:09 +0900 |
parents | 7b24e17e1441 |
children | cc62eb4758b0 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 6 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Fri Nov 19 18:31:06 2021 +0900 +++ b/hoareBinaryTree.agda Fri Nov 19 20:07:09 2021 +0900 @@ -243,12 +243,15 @@ → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t replaceP key value {tree0} {tree} repl [] Pre next exit with proj1 (proj2 Pre) ... | () -replaceP key value {tree0} {tree} repl (leaf ∷ []) Pre next exit = exit tree0 (node key value leaf leaf) ⟪ {!!} , {!!} ⟫ +replaceP {_} {_} {A} key value {tree0} {tree} repl (leaf ∷ []) Pre next exit = + exit tree0 repl ⟪ proj1 Pre , subst (λ k → replacedTree key value k repl ) (repl4 (proj1 (proj2 Pre))) (proj2 (proj2 Pre)) ⟫ where + repl4 : stackInvariant key tree tree0 (leaf ∷ []) → tree ≡ tree0 + repl4 (s-single .leaf) = refl replaceP key value {tree0} {tree} repl (leaf ∷ leaf ∷ st) Pre next exit = {!!} -- can't happen replaceP key value {tree0} {tree} repl (leaf ∷ node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = next key value (node key₁ value₁ left {!!} ) st {!!} ? +... | tri< a ¬b ¬c = next key value (node key₁ value₁ left repl ) st {!!} {!!} ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} {!!} -... | tri> ¬a ¬b c = next key value (node key₁ value₁ {!!} right) st {!!} {!!} +... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right) st {!!} {!!} replaceP key value {tree0} {tree} repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right ) st {!!} ≤-refl ... | tri≈ ¬a b ¬c = next key value (node key value left right ) st {!!} ≤-refl where -- this case won't happen @@ -259,8 +262,6 @@ repl2 (s-left _ si) = {!!} ---- ... next key value (node key₁ value₁ left tree ) (node key₁ value₁ left repl ) st ≤-refl where - open import Relation.Binary.Definitions nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥