Mercurial > hg > Gears > GearsAgda
changeset 642:6e319e44271b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 18 Nov 2021 16:24:51 +0900 |
parents | 14244de916f2 |
children | fbd2adb6d9c5 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 23 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Tue Nov 16 12:13:47 2021 +0900 +++ b/hoareBinaryTree.agda Thu Nov 18 16:24:51 2021 +0900 @@ -151,13 +151,27 @@ si-property-last t t0 (.t ∷ x ∷ st) (s-left si) with si-property1 _ _ (x ∷ st) si ... | refl = si-property-last x t0 (x ∷ st) si +ti-right : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 tree₁ repl) → treeInvariant repl +ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf +ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-right x ti) = ti +ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-left x ti) = t-leaf +ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti₁ + +ti-left : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 repl tree₁ ) → treeInvariant repl +ti-left {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf +ti-left {_} {_} {_} {_} {key₁} {v1} (t-right x ti) = t-leaf +ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti +ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti + stackTreeInvariant : {n : Level} {A : Set n} (repl tree : bt A) → (stack : List (bt A)) → treeInvariant tree → stackInvariant repl tree stack → treeInvariant repl stackTreeInvariant repl .repl .(repl ∷ []) ti (s-single .repl) = ti -stackTreeInvariant {_} {A} repl tree (.repl ∷ st) ti (s-right si) = si1 si where - si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant (node key₁ v1 tree₁ repl) tree st → treeInvariant repl - si1 si = ? -stackTreeInvariant repl tree .(repl ∷ _) ti (s-left si) = {!!} +stackTreeInvariant {_} {A} repl tree (repl ∷ st) ti (s-right si) = ti-right (si1 si) where + si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant (node key₁ v1 tree₁ repl) tree st → treeInvariant (node key₁ v1 tree₁ repl) + si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant (node key₁ v1 tree₁ repl) tree st ti si +stackTreeInvariant {_} {A} repl tree (repl ∷ st) ti (s-left si) = ti-left ( si2 si ) where + si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant (node key₁ v1 repl tree₁ ) tree st → treeInvariant (node key₁ v1 repl tree₁ ) + si2 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant (node key₁ v1 repl tree₁ ) tree st ti si rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () @@ -230,9 +244,11 @@ Pre1 : treeInvariant tree ∧ stackInvariant repl tree (node key₁ value₁ left right ∷ st) ∧ replacedTree key value tree repl Pre1 = Pre repleq : repl ≡ node key₁ value₁ left right - repleq = {!!} - repl1 : treeInvariant (node key₁ value₁ left right) - repl1 = {!!} + repleq with si-property1 _ _ _ (proj1 (proj2 Pre)) + ... | refl = refl + repl1 : treeInvariant (node key₁ value₁ left right) -- stackInvariant (node key₁ value₁ left right) tree st + repl1 = stackTreeInvariant _ _ (node key₁ value₁ left right ∷ st) (proj1 Pre) + (subst (λ k → stackInvariant k tree (node key₁ value₁ left right ∷ st)) repleq (proj1 (proj2 Pre))) repl3 : replacedTree key value (node key₁ value₁ left right) (node key₁ value left right) repl3 = subst (λ k → replacedTree k value (node key₁ value₁ left right) (node key₁ value left right) ) (sym b) r-node ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) (node key₁ value₁ left repl )st {!!} ≤-refl