Mercurial > hg > Gears > GearsAgda
changeset 574:70b09cbefd45
add queue.agda
author | ryokka |
---|---|
date | Thu, 16 Aug 2018 18:22:08 +0900 |
parents | 8777baeb90f8 |
children | 73fc32092b64 |
files | queue.agda redBlackTreeTest.agda stack.agda |
diffstat | 3 files changed, 143 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/queue.agda Thu Aug 16 18:22:08 2018 +0900 @@ -0,0 +1,122 @@ +open import Level renaming (suc to succ ; zero to Zero ) +module Queue where + +open import Relation.Binary.PropositionalEquality +open import Relation.Binary.Core +open import Data.Nat + +data Maybe {n : Level } (a : Set n) : Set n where + Nothing : Maybe a + Just : a -> Maybe a + +data Bool {n : Level }: Set n where + True : Bool + False : Bool + + +record QueueMethods {n m : Level} (a : Set n) {t : Set m} (queueImpl : Set n) : Set (m Level.⊔ n) where + field + put : queueImpl -> a -> (queueImpl -> t) -> t + take : queueImpl -> (queueImpl -> Maybe a -> t) -> t + clear : queueImpl -> (queueImpl -> t) -> t +open QueueMethods + +record Queue {n m : Level} (a : Set n) {t : Set m} (qu : Set n) : Set (m Level.⊔ n) where + field + queue : qu + queueMethods : QueueMethods {n} {m} a {t} qu + putQueue : a -> (Queue a qu -> t) -> t + putQueue a next = put (queueMethods) (queue) a (\q1 -> next record {queue = q1 ; queueMethods = queueMethods}) + takeQueue : (Queue a qu -> Maybe a -> t) -> t + takeQueue next = take (queueMethods) (queue) (\q1 d1 -> next record {queue = q1 ; queueMethods = queueMethods} d1) + clearQueue : (Queue a qu -> t) -> t + clearQueue next = clear (queueMethods) (queue) (\q1 -> next record {queue = q1 ; queueMethods = queueMethods}) +open Queue + + + +record Element {n : Level} (a : Set n) : Set n where + inductive + constructor cons + field + datum : a -- `data` is reserved by Agda. + next : Maybe (Element a) +open Element + + +record SingleLinkedQueue {n : Level} (a : Set n) : Set n where + field + top : Maybe (Element a) + last : Maybe (Element a) +open SingleLinkedQueue + + +{-# TERMINATING #-} +reverseElement : {n : Level} {a : Set n} -> Element a -> Maybe (Element a) -> Element a +reverseElement el Nothing with next el +... | Just el1 = reverseElement el1 (Just rev) + where + rev = cons (datum el) Nothing +... | Nothing = el +reverseElement el (Just el0) with next el +... | Just el1 = reverseElement el1 (Just (cons (datum el) (Just el0))) +... | Nothing = (cons (datum el) (Just el0)) + + +{-# TERMINATING #-} +putSingleLinkedQueue : {n m : Level} {t : Set m} {a : Set n} -> SingleLinkedQueue a -> a -> (Code : SingleLinkedQueue a -> t) -> t +putSingleLinkedQueue queue a cs with top queue +... | Just te = cs queue1 + where + re = reverseElement te Nothing + ce = cons a (Just re) + commit = reverseElement ce Nothing + queue1 = record queue {top = Just commit} +... | Nothing = cs queue1 + where + cel = record {datum = a ; next = Nothing} + queue1 = record {top = Just cel ; last = Just cel} + +{-# TERMINATING #-} +takeSingleLinkedQueue : {n m : Level} {t : Set m} {a : Set n} -> SingleLinkedQueue a -> (Code : SingleLinkedQueue a -> (Maybe a) -> t) -> t +takeSingleLinkedQueue queue cs with (top queue) +... | Just te = cs record {top = (next te) ; last = Just (lastElement te)} (Just (datum te)) + where + lastElement : {n : Level} {a : Set n} -> Element a -> Element a + lastElement el with next el + ... | Just el1 = lastElement el1 + ... | Nothing = el +... | Nothing = cs queue Nothing + +clearSingleLinkedQueue : {n m : Level} {t : Set m} {a : Set n} -> SingleLinkedQueue a -> (SingleLinkedQueue a -> t) -> t +clearSingleLinkedQueue queue cs = cs (record {top = Nothing ; last = Nothing}) + + +emptySingleLinkedQueue : {n : Level} {a : Set n} -> SingleLinkedQueue a +emptySingleLinkedQueue = record {top = Nothing ; last = Nothing} + +singleLinkedQueueSpec : {n m : Level } {t : Set m } {a : Set n} -> QueueMethods {n} {m} a {t} (SingleLinkedQueue a) +singleLinkedQueueSpec = record { + put = putSingleLinkedQueue + ; take = takeSingleLinkedQueue + ; clear = clearSingleLinkedQueue + } + + +createSingleLinkedQueue : {n m : Level} {t : Set m} {a : Set n} -> Queue {n} {m} a {t} (SingleLinkedQueue a) +createSingleLinkedQueue = record { + queue = emptySingleLinkedQueue ; + queueMethods = singleLinkedQueueSpec + } + + +check1 = putSingleLinkedQueue emptySingleLinkedQueue 1 (\q1 -> putSingleLinkedQueue q1 2 (\q2 -> putSingleLinkedQueue q2 3 (\q3 -> putSingleLinkedQueue q3 4 (\q4 -> putSingleLinkedQueue q4 5 (\q5 -> q5))))) + + +check2 = putSingleLinkedQueue emptySingleLinkedQueue 1 (\q1 -> putSingleLinkedQueue q1 2 (\q2 -> putSingleLinkedQueue q2 3 (\q3 -> putSingleLinkedQueue q3 4 (\q4 -> takeSingleLinkedQueue q4 (\q d -> q))))) + + +test01 : {n : Level } {a : Set n} -> SingleLinkedQueue a -> Maybe a -> Bool {n} +test01 queue _ with (top queue) +... | (Just _) = True +... | Nothing = False
--- a/redBlackTreeTest.agda Sun May 06 19:35:38 2018 +0900 +++ b/redBlackTreeTest.agda Thu Aug 16 18:22:08 2018 +0900 @@ -52,19 +52,19 @@ test2 = refl open ≡-Reasoning -test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1 +test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1 $ λ t → putTree1 t 2 2 $ λ t → putTree1 t 3 3 - $ λ t → putTree1 t 4 4 + $ λ t → putTree1 t 4 4 $ λ t → getRedBlackTree t 1 - $ λ t x → check2 x 1 ≡ True + $ λ t x → check2 x 1 ≡ True test3 = begin check2 (Just (record {key = 1 ; value = 1 ; color = Black ; left = Nothing ; right = Just (leafNode 2 2)})) 1 ≡⟨ refl ⟩ True ∎ -test31 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1 +test31 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1 $ λ t → putTree1 t 2 2 $ λ t → putTree1 t 3 3 $ λ t → putTree1 t 4 4 @@ -72,11 +72,11 @@ $ λ t x → x -- test5 : Maybe (Node ℕ ℕ) -test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4 +test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4 $ λ t → putTree1 t 6 6 $ λ t0 → clearSingleLinkedStack (nodeStack t0) $ λ s → findNode1 t0 s (leafNode 3 3) ( root t0 ) - $ λ t1 s n1 → replaceNode t1 s n1 + $ λ t1 s n1 → replaceNode t1 s n1 $ λ t → getRedBlackTree t 3 -- $ λ t x → SingleLinkedStack.top (stack s) -- $ λ t x → n1 @@ -103,7 +103,7 @@ value1 = 1 test8 : Maybe (Node ℕ ℕ) -test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 +test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 $ λ t → putTree1 t 2 2 (λ t → root t) @@ -116,19 +116,19 @@ λ t x → check2 x 1 ≡ True ))) test10 = refl -test11 = putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 +test11 = putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 $ λ t → putRedBlackTree t 2 2 $ λ t → putRedBlackTree t 3 3 $ λ t → getRedBlackTree t 2 $ λ t x → root t -redBlackInSomeState :{ m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} → RedBlackTree {Level.zero} {m} {t} a ℕ +redBlackInSomeState :{ m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} → RedBlackTree {Level.zero} {m} {t} a ℕ redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compareT } compTri : ( x y : ℕ ) -> Tri (x < y) ( x ≡ y ) ( x > y ) -compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) +compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) where open import Relation.Binary checkT : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool {m} @@ -174,10 +174,12 @@ putTest1 : (n : Maybe (Node ℕ ℕ)) → (k : ℕ) (x : ℕ) → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x - (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) + (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) putTest1 n k x with n ... | Just n1 = lemma0 where + upelem : (eleN : Element (Node ℕ ℕ)) -> (Node ℕ ℕ) + upelem eleN = n1 tree0 : (s : SingleLinkedStack (Node ℕ ℕ) ) → RedBlackTree ℕ ℕ tree0 s = record { root = Just n1 ; nodeStack = s ; compare = compareT } lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → StackTreeInvariant (leafNode k x) s (tree0 s) @@ -185,15 +187,15 @@ (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True))) lemma2 s STI with compTri k (key n1) ... | tri≈ le refl gt = lemma5 s ( tree0 s ) n1 - where + where lemma5 : (s : SingleLinkedStack (Node ℕ ℕ) ) → ( t : RedBlackTree ℕ ℕ ) → ( n : Node ℕ ℕ ) → popSingleLinkedStack ( record { top = Just (cons n (SingleLinkedStack.top s)) } ) - ( \ s1 _ -> (replaceNode (tree0 s1) s1 (record n1 { key = k ; value = x } ) (λ t → + ( \ s1 _ -> (replaceNode (tree0 s1) s1 (record n1 { key = k ; value = x } ) (λ t → GetRedBlackTree.checkNode t (key n1) (λ t₁ x1 → checkT x1 x ≡ True) (root t))) ) lemma5 s t n with (top s) ... | Just n2 with compTri k k ... | tri< _ neq _ = ⊥-elim (neq refl) ... | tri> _ neq _ = ⊥-elim (neq refl) - ... | tri≈ _ refl _ = ⊥-elim ( (notInStack STI) {!!} ) + ... | tri≈ _ refl _ = ⊥-elim (notInStack STI ({!!})) lemma5 s t n | Nothing with compTri k k ... | tri≈ _ refl _ = checkEQ x _ refl ... | tri< _ neq _ = ⊥-elim (neq refl) @@ -203,12 +205,12 @@ lemma0 : clearSingleLinkedStack (record {top = Nothing}) (\s → findNode (tree0 s) s (leafNode k x) n1 (λ tree1 s n1 → replaceNode tree1 s n1 (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)))) lemma0 = lemma2 (record {top = Nothing}) ( record { sti = {!!} ; notInStack = {!!} } ) -... | Nothing = lemma1 - where +... | Nothing = lemma1 + where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compareT x₁ y } ) k - ( λ t x1 → checkT x1 x ≡ True) - lemma1 with compTri k k + ( λ t x1 → checkT x1 x ≡ True) + lemma1 with compTri k k ... | tri≈ _ refl _ = checkEQ x _ refl ... | tri< _ neq _ = ⊥-elim (neq refl) ... | tri> _ neq _ = ⊥-elim (neq refl)
--- a/stack.agda Sun May 06 19:35:38 2018 +0900 +++ b/stack.agda Thu Aug 16 18:22:08 2018 +0900 @@ -25,7 +25,7 @@ Nothing : Maybe a Just : a -> Maybe a -record StackMethods {n m : Level } (a : Set n ) {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where +record StackMethods {n m : Level } (a : Set n ) {t : Set m } (stackImpl : Set n ) : Set (m Level.⊔ n) where field push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t