Mercurial > hg > Gears > GearsAgda
changeset 736:744ead2536a4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 21 Apr 2023 14:44:52 +0900 |
parents | 7901892bb1d8 |
children | 7ae2dea2546b |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 27 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Fri Apr 21 10:50:10 2023 +0900 +++ b/hoareBinaryTree1.agda Fri Apr 21 14:44:52 2023 +0900 @@ -593,21 +593,27 @@ rbt-key {n} A (t-node-red key value x x₁ rb rb₁) = just key rbt-key {n} A (t-node-black key value x x₁ rb rb₁) = just key -data rbstackInvariant2 {n : Level} {A : Set n} (orig : bt A) : (parent grand : bt A) → Set n where - s2-left : {key : ℕ} {value : A} → (n1 : bt A) → rbstackInvariant2 orig (node key value orig n1) orig - s2-right : {key : ℕ} {value : A} → (n1 : bt A) → rbstackInvariant2 orig (node key value n1 orig) orig +data rbstackInvariant2 {n : Level} {A : Set n} (self : bt A) : (parent grand : bt A) → Set n where + s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp self n1 → rbstackInvariant2 self parent (node kg vg parent n2) + s2-1sp2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp n1 self → rbstackInvariant2 self parent (node kg vg parent n2) + s2-s12p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp self n1 → rbstackInvariant2 self parent (node kg vg n2 parent) + s2-1s2p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp n1 self → rbstackInvariant2 self parent (node kg vg n2 parent) -data replacedTreeRotate {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt A ) → Set n where - rr-leaf : replacedTreeRotate key value leaf (node key value leaf leaf) - rr-node : {value₁ : A} → {t t₁ : bt A} → replacedTreeRotate key value (node key value₁ t t₁) (node key value t t₁) - rr-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → k < key → replacedTreeRotate key value t2 t → replacedTreeRotate key value (node k v1 t1 t2) (node k v1 t1 t) - rr-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → key < k → replacedTreeRotate key value t1 t → replacedTreeRotate key value (node k v1 t1 t2) (node k v1 t t2) +data rotatedTree {n : Level} {A : Set n} : (before after : bt A ) → Set n where + rr-leaf : rotatedTree leaf leaf + rr-node : {t : bt A} → rotatedTree t t + rr-right : {ka kb : ℕ } {va vb : A} → {ta tb tc ta1 tb1 tc1 : bt A} + → ka < kb + → rotatedTree ta ta1 → rotatedTree tb tb1 → rotatedTree tc tc1 + → rotatedTree (node ka va (node kb vb ta tb) tc) (node kb vb ta1 (node ka va tb1 tc1) ) + rr-left : {ka kb : ℕ } {va vb : A} → {ta tb tc ta1 tb1 tc1 : bt A} + → ka < kb + → rotatedTree ta ta1 → rotatedTree tb tb1 → rotatedTree tc tc1 + → rotatedTree (node kb vb ta (node ka va tb tc) ) (node ka va (node kb vb ta1 tb1) tc1) -rbsi-len : {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) {key₁ : ℕ } - → rbstackInvariant2 ? ? ? → ℕ -rbsi-len orig = ? +rbsi-len : {n : Level} {A : Set n} {orig parent grand : bt A} + → rbstackInvariant2 orig parent grand → ℕ +rbsi-len {n} {A} {s} {p} {g} st = ? findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (tree1 : RBTree A key1 c1 d1 ) → rbstackInvariant2 ? ? ? @@ -633,13 +639,13 @@ → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) → (si : rbstackInvariant2 ? ? ?) - → (ri : replacedTreeRotate key value (RB→bt A tree) (RB→bt A repl)) + → (ri : rotatedTree (RB→bt A tree) (RB→bt A repl)) → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) → (si1 : rbstackInvariant2 ? ? ?) - → (ri : replacedTreeRotate key value (RB→bt A tree1) (RB→bt A repl1)) - → rbsi-len orig si1 < rbsi-len orig si → t ) + → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1)) + → rbsi-len si1 < rbsi-len si → t ) → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) - → (ri : replacedTreeRotate key value (RB→bt A orig) (RB→bt A repl1)) + → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1)) → t ) → t insertCase5 {n} {m} {A} {t} key value orig tree repl si ri next exit = ? where insertCase51 : (key1 : ℕ) (si : rbstackInvariant2 ? ? ? ) → t @@ -649,13 +655,13 @@ → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) → (si : rbstackInvariant2 ? ? ? ) - → (ri : replacedTreeRotate key value (RB→bt A tree) (RB→bt A repl)) + → (ri : rotatedTree (RB→bt A tree) (RB→bt A repl)) → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) → (si1 : rbstackInvariant2 ? ? ? ) - → (ri : replacedTreeRotate key value (RB→bt A tree1) (RB→bt A repl1)) - → rbsi-len orig si1 < rbsi-len orig si → t ) + → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1)) + → rbsi-len si1 < rbsi-len si → t ) → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) - → (ri : replacedTreeRotate key value (RB→bt A orig) (RB→bt A repl1)) + → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1)) → t ) → t replaceRBP {n} {m} {A} {t} key value {_} {key2} orig tree repl si ri next exit = insertCase1 key2 si where insertCase4 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t