Mercurial > hg > Gears > GearsAgda
changeset 599:7ae0c25d2b58
writing invaliant
author | ryokka |
---|---|
date | Wed, 26 Feb 2020 19:00:08 +0900 |
parents | 40ffa0833d03 |
children | 016a8deed93d |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 24 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Wed Feb 26 18:27:54 2020 +0900 +++ b/hoareBinaryTree1.agda Wed Feb 26 19:00:08 2020 +0900 @@ -14,7 +14,7 @@ open import Relation.Binary open import Relation.Binary.PropositionalEquality -open import Relation.Nullary +open import Relation.Nullary hiding (proof) open import logic @@ -61,7 +61,30 @@ insert-test1 = bt-insert 5 7 bt-empty (λ x → bt-insert 15 17 x (λ y → y)) +tree+stack0 : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n +tree+stack0 {n} {A} tree mtree [] = {!!} +tree+stack0 {n} {A} tree mtree (x ∷ stack) = {!!} + tree+stack : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n tree+stack {n} {A} bt-leaf mtree stack = (mtree ≡ bt-leaf) ∧ (stack ≡ []) tree+stack {n} {A} (bt-node key x tree tree₁) mtree stack = bt-replace key x mtree stack (λ ntree → ntree ≡ tree) +data _implies_ (A B : Set ) : Set (succ Z) where + proof : ( A → B ) → A implies B + +implies2p : {A B : Set } → A implies B → A → B +implies2p (proof x) = x + + +bt-find-hoare1 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree mtree : bt A ) → (stack : List (bt A)) + → (tree+stack tree mtree stack) + → ( (ntree : bt A) → (nstack : List (bt A)) → (tree+stack tree ntree nstack) → t ) → t +bt-find-hoare1 {n} {m} {A} {t} key leaf@(bt-leaf) mtree stack t+s exit = exit leaf stack {!!} +bt-find-hoare1 {n} {m} {A} {t} key (bt-node key₁ AA tree tree₁) mtree stack t+s next with <-cmp key key₁ +bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA tree tree₁) mtree stack t+s exit | tri≈ ¬a b ¬c = exit node stack {!!} +bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) mtree stack t+s next | tri< a ¬b ¬c = bt-find-hoare1 {n} {m} {A} {t} key ltree {!!} (node ∷ stack) {!!} {!!} +bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) mtree stack t+s next | tri> ¬a ¬b c = bt-find-hoare1 key rtree {!!} (node ∷ stack) {!!} {!!} + + +bt-find-hoare : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → ( (ntree : bt A) → (nstack : List (bt A)) → (tree+stack tree ntree nstack) → t ) → t +bt-find-hoare {n} {m} {A} {t} key node exit = bt-find-hoare1 {n} {m} {A} {t} key node bt-empty [] ({!!}) exit