Mercurial > hg > Gears > GearsAgda
changeset 590:7c424dd0945d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 06 Dec 2019 17:39:37 +0900 |
parents | 37f5826ca7d2 |
children | 8ab2e2f9469f |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 24 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Fri Dec 06 13:01:53 2019 +0900 +++ b/hoareBinaryTree.agda Fri Dec 06 17:39:37 2019 +0900 @@ -62,6 +62,10 @@ bt-node : ⦃ l l' u u' : ℕ ⦄ → (d : ℕ) → bt {n} {a} → bt {n} {a} → l ≤ l' → u' ≤ u → bt +-- +-- +-- no children , having left node , having right node , having both +-- data bt' {n : Level} (A : Set n) : (key : ℕ) → Set n where -- (a : Setn) bt'-leaf : (key : ℕ) → bt' A key bt'-node : { l r : ℕ } → (key : ℕ) → (value : A) → @@ -70,7 +74,6 @@ data bt'-path {n : Level} (A : Set n) : Set n where -- (a : Setn) bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key < left-key) → bt'-path A bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key < key) → bt'-path A - bt'-null : bt'-path A test = bt'-left {Z} {ℕ} 3 {5} (bt'-leaf 5) (s≤s (s≤s (s≤s (s≤s z≤n)))) @@ -85,9 +88,27 @@ bt-find' key tr@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri> ¬a ¬b c = bt-find' key tree ( (bt'-right key {key₁} tr c ) ∷ stack) next +a<sa : { a : ℕ } → a < suc a +a<sa {zero} = s≤s z≤n +a<sa {suc a} = s≤s a<sa -bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' ℕ tn ) → List (bt'-path A ) → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t -bt-replace' = {!!} +pa<a : { a : ℕ } → pred (suc a) < suc a +pa<a {zero} = s≤s z≤n +pa<a {suc a} = s≤s pa<a + +bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (value : A ) → (tree : bt' A tn ) → List (bt'-path A ) + → ( {key1 : ℕ } → bt' A key1 → t ) → t +bt-replace' {n} {m} {A} {t} {tn} key value node stack next = bt-replace1 tn node where + bt-replace0 : {tn : ℕ } (node : bt' A tn ) → List (bt'-path A ) → t + bt-replace0 node [] = next node + bt-replace0 node (bt'-left key x x₁ ∷ stack) = {!!} + bt-replace0 node (bt'-right key x x₁ ∷ stack) = {!!} + bt-replace1 : (tn : ℕ ) (tree : bt' A tn ) → t + bt-replace1 zero (bt'-leaf key0) = bt-replace0 (bt'-node (suc zero) value + (bt'-leaf zero) (bt'-leaf (suc (suc zero))) {!!} {!!}) stack + bt-replace1 (suc tn) (bt'-leaf key0) = bt-replace0 (bt'-node (suc tn) value + (bt'-leaf tn) (bt'-leaf (suc (suc tn)) ){!!} {!!}) stack + bt-replace1 tn (bt'-node key value node node₁ x x₁) = bt-replace0 (bt'-node key value node node₁ x x₁) stack bt-find'-assert1 : {n m : Level} {A : Set n} {t : Set m} → Set n bt-find'-assert1 {n} {m} {A} {t} = (key : ℕ) → (val : A) → bt-find' key {!!} {!!} (λ tree stack → {!!})