Mercurial > hg > Gears > GearsAgda
changeset 592:7fb57243a8c9
fix
author | ryokka |
---|---|
date | Fri, 06 Dec 2019 18:19:24 +0900 |
parents | 8ab2e2f9469f |
children | 063274f64a77 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 10 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Fri Dec 06 17:48:18 2019 +0900 +++ b/hoareBinaryTree.agda Fri Dec 06 18:19:24 2019 +0900 @@ -72,7 +72,7 @@ bt' {n} A l → bt' {n} A r → l ≤ key → key ≤ r → bt' A key data bt'-path {n : Level} (A : Set n) : Set n where -- (a : Setn) - bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key ≤ left-key) → bt'-path A + bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key ≤ left-key) → bt'-path A bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key ≤ key) → bt'-path A @@ -83,15 +83,19 @@ bt-find' key tr@(bt'-leaf key₁) stack next = next tr stack -- no key found bt-find' key (bt'-node key₁ value tree tree₁ x x₁) stack next with <-cmp key key₁ bt-find' key tr@(bt'-node {l} {r} key₁ value tree tree₁ x x₁) stack next | tri< a ¬b ¬c = - bt-find' key tree ( (bt'-left key {key₁} tr {!!} ) ∷ stack) next + bt-find' key tree ( (bt'-left key {key₁} tr (<⇒≤ a) ) ∷ stack) next bt-find' key found@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri≈ ¬a b ¬c = next found stack bt-find' key tr@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri> ¬a ¬b c = - bt-find' key tree ( (bt'-right key {key₁} tr {!!} ) ∷ stack) next + bt-find' key tree ( (bt'-right key {key₁} tr (<⇒≤ c) ) ∷ stack) next a<sa : { a : ℕ } → a < suc a a<sa {zero} = s≤s z≤n a<sa {suc a} = s≤s a<sa +a≤sa : { a : ℕ } → a ≤ suc a +a≤sa {zero} = z≤n +a≤sa {suc a} = s≤s a≤sa + pa<a : { a : ℕ } → pred (suc a) < suc a pa<a {zero} = s≤s z≤n pa<a {suc a} = s≤s pa<a @@ -101,11 +105,12 @@ bt-replace' {n} {m} {A} {t} {tn} key value node stack next = bt-replace1 tn node where bt-replace0 : {tn : ℕ } (node : bt' A tn ) → List (bt'-path A ) → t bt-replace0 node [] = next node - bt-replace0 node (bt'-left key x x₁ ∷ stack) = {!!} + bt-replace0 node (bt'-left key (bt'-leaf key₁) x₁ ∷ stack) = {!!} + bt-replace0 {tn} node (bt'-left key (bt'-node key₁ value x x₂ x₃ x₄) x₁ ∷ stack) = bt-replace0 {key₁} (bt'-node key₁ value node x₂ {!!} x₄ ) stack bt-replace0 node (bt'-right key x x₁ ∷ stack) = {!!} bt-replace1 : (tn : ℕ ) (tree : bt' A tn ) → t bt-replace1 tn (bt'-leaf key0) = bt-replace0 (bt'-node tn value - (bt'-leaf (pred tn)) (bt'-leaf (suc tn) ){!!} {!!}) stack + (bt'-leaf (pred tn)) (bt'-leaf (suc tn) ) (≤⇒pred≤ ≤-refl) a≤sa) stack bt-replace1 tn (bt'-node key value node node₁ x x₁) = bt-replace0 (bt'-node key value node node₁ x x₁) stack bt-find'-assert1 : {n m : Level} {A : Set n} {t : Set m} → Set n