Mercurial > hg > Gears > GearsAgda
changeset 601:803c423c2855
modify
author | ryokka |
---|---|
date | Wed, 04 Mar 2020 19:00:29 +0900 |
parents | 016a8deed93d |
children | 0dbbcab02864 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 92 insertions(+), 128 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Wed Mar 04 17:51:05 2020 +0900 +++ b/hoareBinaryTree.agda Wed Mar 04 19:00:29 2020 +0900 @@ -61,11 +61,6 @@ N : (key : ℕ) → (ltree : bt A ) → (rtree : bt A ) → bt A - --- data bt-path {n : Level} (A : Set n) : Set n where --- bt-left : (key : ℕ) → (bt A ) → bt-path A --- bt-right : (key : ℕ) → (bt A ) → bt-path A - data bt-path' {n : Level} (A : Set n) : Set n where left : (bt A) → bt-path' A right : (bt A) → bt-path' A @@ -76,9 +71,98 @@ tree->key {n} L = zero tree->key {n} (N key tree tree₁) = key --- path2tree : {n : Level} {A : Set n} → (bt-path' {n} A) → bt A --- path2tree {n} {A} (left x) = x --- path2tree {n} {A} (right x) = x +node-ex : {n : Level} {A : Set n} → bt A +node-ex {n} {A} = (N zero (L) (L)) + +ex : {n : Level} {A : Set n} → bt A +ex {n} {A} = (N {n} {A} 8 (N 6 (N 2 (N 1 L L) (N 3 L L)) (N 7 L L)) (N 9 L L)) + +exLR : {n : Level} {A : Set n} → bt A +exLR {n} {A} = (N {n} {A} 4 (N 2 L (N 3 L L)) (N 5 L L)) + +exRL : {n : Level} {A : Set n} → bt A +exRL {n} {A} = (N {n} {A} 3 L (N 5 (N 4 L L) L)) + +leaf-ex : {n : Level} {A : Set n} → bt A +leaf-ex {n} {A} = L + + +findLoopInv : {n m : Level} {A : Set n} {t : Set m} → (orig : bt A) → (modify : bt A ) + → (stack : List (bt-path' A)) → Set n +findLoopInv {n} {m} {A} {t} tree mtree [] = tree ≡ mtree +findLoopInv {n} {m} {A} {t} tree mtree (left L ∷ st) = mtree ≡ (L) +findLoopInv {n} {m} {A} {t} tree mtree (right L ∷ st) = mtree ≡ (L) +findLoopInv {n} {m} {A} {t} tree mtree (left (N key x x₁) ∷ st) = mtree ≡ x +findLoopInv {n} {m} {A} {t} tree mtree (right (N key x x₁) ∷ st) = mtree ≡ x₁ + + +hightMerge : {n m : Level} {A : Set n} {t : Set m} → (l r : ℕ) → (ℕ → t) → t +hightMerge lh rh next with <-cmp lh rh +hightMerge lh rh next | tri< a ¬b ¬c = next rh +hightMerge lh rh next | tri≈ ¬a b ¬c = next lh +hightMerge lh rh next | tri> ¬a ¬b c = next lh + + +isHightL : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t +isHightL L next = next zero +isHightL {n} {_} {A} (N key tree tree₁) next = isHightL tree λ x → next (suc x) + +isHightR : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t +isHightR L next = next zero +isHightR {n} {_} {A} (N key tree tree₁) next = isHightR tree₁ λ x → next (suc x) + +isHight : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t +isHight L next = next zero +isHight {n} {_} {A} tr@(N key tree tree₁) next = isHightL tr (λ lh → isHightR tr λ rh → hightMerge {n} {_} {A} (suc lh) (suc rh) next) + +treeHight : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t +treeHight L next = next zero +treeHight {n} {_} {A} (N key tree tree₁) next = isHight tree (λ lh → isHight tree₁ (λ rh → hightMerge {n} {_} {A} (lh) (rh) next)) + +rhight : {n : Level} {A : Set n} → bt A → ℕ +rhight L = zero +rhight (N key tree tree₁) with <-cmp (rhight tree) (rhight tree₁) +rhight (N key tree tree₁) | tri< a ¬b ¬c = suc (rhight tree₁) +rhight (N key tree tree₁) | tri≈ ¬a b ¬c = suc (rhight tree₁) +rhight (N key tree tree₁) | tri> ¬a ¬b c = suc (rhight tree) + +leaf≠node : {n : Level} {A : Set n} {a : ℕ} {l r : bt A} → ((N {n} {A} a l r) ≡ L) → ⊥ +leaf≠node () + +leafIsNoHight : {n : Level} {A : Set n} (tree : bt A) → tree ≡ L → (treeHight tree (λ x → x) ≡ 0) +leafIsNoHight L refl = refl + + +hight-tree : {n : Level} {A : Set n} {k : ℕ} {l r : bt A} → ℕ → (tree : bt A) → Set n +hight-tree zero tree = tree ≡ L +hight-tree {n} {A} {k} {l} {r} (suc h) tree = tree ≡ (N k l r) + + +hightIsNotLeaf : {n : Level} {A : Set n} (h : ℕ) → (tree : bt A) → (0 ≡ treeHight tree (λ x → x)) → (tree ≡ L) +hightIsNotLeaf h tree eq = {!!} + +-- leaf≡0 : {n : Level} {A : Set n} (tree : bt A) → (rhight tree ≡ 0) → tree ≡ L +-- leaf≡0 L _ = refl + +-- find-function sepalate "next", "loop" +find-hoare-next : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree mt : bt A ) → (st : List (bt-path' A)) → (findLoopInv {n} {m} {A} {t} tree mt st) + → (next : (nt : bt A) → (ns : List (bt-path' A)) → (findLoopInv {n} {m} {A} {t} tree nt ns) → t ) + → (exit : (nt : bt A) → (ns : List (bt-path' A)) → (nt ≡ L) ∨ (key ≡ tree->key nt) → t ) → t +find-hoare-next key leaf@(L) mt st eq _ exit = exit leaf st (case1 refl) +find-hoare-next key (N key₁ tree tree₁) mt st eq next exit with <-cmp key key₁ +find-hoare-next key node@(N key₁ tree tree₁) mt st eq _ exit | tri≈ ¬a b ¬c = exit node st (case2 b) +find-hoare-next key node@(N key₁ tree tree₁) mt st eq next _ | tri< a ¬b ¬c = next tree ((left node) ∷ st) refl +find-hoare-next key node@(N key₁ tree tree₁) mt st eq next _ | tri> ¬a ¬b c = next tree₁ ((right node) ∷ st) refl + +find-hoare-loop : {n m : Level} {A : Set n} {t : Set m} → (hight key : ℕ) → (tree mt : bt A ) → (st : List (bt-path' A)) → (findLoopInv {n} {m} {A} {t} tree mt st) + → (exit : (nt : bt A) → (ns : List (bt-path' A)) → (nt ≡ L) ∨ (key ≡ tree->key nt) → t) → t +find-hoare-loop zero key tree mt st eq exit with key ≟ (tree->key tree) +find-hoare-loop zero key tree mt st eq exit | yes p = exit tree st (case2 p) +find-hoare-loop zero key tree mt st eq exit | no ¬p = exit tree st (case1 {!!}) + +find-hoare-loop (suc h) key otr lf@(L) st eq exit = exit lf st (case1 refl) +find-hoare-loop (suc h) key otr tr@(N key₁ tree tree₁) st eq exit = find-hoare-next key otr tr st eq ((λ tr1 st1 eq → find-hoare-loop h key otr tr1 st1 eq exit)) exit + -- bt-find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt-path A) @@ -116,126 +200,6 @@ -- find-loop (suc h) key lf@(L) st exit = exit lf st -- find-loop (suc h) key tr@(N key₁ tree tree₁) st exit = find-next key tr st ((λ tr1 st1 → find-loop h key tr1 st1 exit)) exit - - -node-ex : {n : Level} {A : Set n} → bt A -node-ex {n} {A} = (N zero (L) (L)) - -ex : {n : Level} {A : Set n} → bt A -ex {n} {A} = (N {n} {A} 8 (N 6 (N 2 (N 1 L L) (N 3 L L)) (N 7 L L)) (N 9 L L)) - -exLR : {n : Level} {A : Set n} → bt A -exLR {n} {A} = (N {n} {A} 4 (N 2 L (N 3 L L)) (N 5 L L)) - -exRL : {n : Level} {A : Set n} → bt A -exRL {n} {A} = (N {n} {A} 3 L (N 5 (N 4 L L) L)) - - - - -leaf-ex : {n : Level} {A : Set n} → bt A -leaf-ex {n} {A} = L - - - - - - -findLoopInv : {n m : Level} {A : Set n} {t : Set m} → (orig : bt A) → (modify : bt A ) - → (stack : List (bt-path' A)) → Set n --- findLoopInv {n} {m} {A} {t} tree mtree [] = tree ≡ mtree --- findLoopInv {n} {m} {A} {t} tree mtree (left (L) ∷ st) = mtree ≡ (L) --- findLoopInv {n} {m} {A} {t} tree mtree (right (L) ∷ st) = mtree ≡ (L) -findLoopInv {n} {m} {A} {t} tree mtree [] = tree ≡ mtree -findLoopInv {n} {m} {A} {t} tree mtree (left L ∷ st) = mtree ≡ (L) -findLoopInv {n} {m} {A} {t} tree mtree (right L ∷ st) = mtree ≡ (L) -findLoopInv {n} {m} {A} {t} tree mtree (left (N key x x₁) ∷ st) = mtree ≡ x -findLoopInv {n} {m} {A} {t} tree mtree (right (N key x x₁) ∷ st) = mtree ≡ x₁ - - - - - - - - - -hightMerge : {n m : Level} {A : Set n} {t : Set m} → (l r : ℕ) → (ℕ → t) → t -hightMerge lh rh next with <-cmp lh rh -hightMerge lh rh next | tri< a ¬b ¬c = next rh -hightMerge lh rh next | tri≈ ¬a b ¬c = next lh -hightMerge lh rh next | tri> ¬a ¬b c = next lh - -isHightL : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t -isHightL L next = next zero -isHightL {n} {_} {A} (N key tree tree₁) next = isHightL tree λ x → next (suc x) - -isHightR : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t -isHightR L next = next zero -isHightR {n} {_} {A} (N key tree tree₁) next = isHightR tree₁ λ x → next (suc x) - -isHight : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t -isHight L next = next zero -isHight {n} {_} {A} tr@(N key tree tree₁) next = isHightL tr (λ lh → isHightR tr λ rh → hightMerge {n} {_} {A} (suc lh) (suc rh) next) - - -treeHight : {n m : Level} {A : Set n} {t : Set m} → bt A → (ℕ → t) → t -treeHight L next = next zero -treeHight {n} {_} {A} (N key tree tree₁) next = isHight tree (λ lh → isHight tree₁ (λ rh → hightMerge {n} {_} {A} (lh) (rh) next)) - -rhight : {n : Level} {A : Set n} → bt A → ℕ -rhight L = zero -rhight (N key tree tree₁) with <-cmp (rhight tree) (rhight tree₁) -rhight (N key tree tree₁) | tri< a ¬b ¬c = suc (rhight tree₁) -rhight (N key tree tree₁) | tri≈ ¬a b ¬c = suc (rhight tree₁) -rhight (N key tree tree₁) | tri> ¬a ¬b c = suc (rhight tree) - -leaf≠node : {n : Level} {A : Set n} {a : ℕ} {l r : bt A} → ((N {n} {A} a l r) ≡ L) → ⊥ -leaf≠node () - -leafIsNoHight : {n : Level} {A : Set n} (tree : bt A) → tree ≡ L → (treeHight tree (λ x → x) ≡ 0) -leafIsNoHight L refl = refl - - - -hight-tree : {n : Level} {A : Set n} {k : ℕ} {l r : bt A} → ℕ → (tree : bt A) → Set n -hight-tree zero tree = tree ≡ L -hight-tree {n} {A} {k} {l} {r} (suc h) tree = tree ≡ (N k l r) - - -hightIsNotLeaf : {n : Level} {A : Set n} (h : ℕ) → (tree : bt A) → (h ≡ 0 ) ∧ (h ≡ treeHight tree (λ x → x)) → (tree ≡ L) -hightIsNotLeaf .0 tree record { proj1 = refl ; proj2 = p2 } = {!!} - --- leaf≡0 : {n : Level} {A : Set n} (tree : bt A) → (rhight tree ≡ 0) → tree ≡ L --- leaf≡0 L _ = refl - - - - - - - - - -find-hoare-next : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree mt : bt A ) → (st : List (bt-path' A)) → (findLoopInv {n} {m} {A} {t} tree mt st) - → (next : (nt : bt A) → (ns : List (bt-path' A)) → (findLoopInv {n} {m} {A} {t} tree nt ns) → t ) - → (exit : (nt : bt A) → (ns : List (bt-path' A)) → (nt ≡ L) ∨ (key ≡ tree->key nt) → t ) → t -find-hoare-next key leaf@(L) mt st eq _ exit = exit leaf st (case1 refl) -find-hoare-next key (N key₁ tree tree₁) mt st eq next exit with <-cmp key key₁ -find-hoare-next key node@(N key₁ tree tree₁) mt st eq _ exit | tri≈ ¬a b ¬c = exit node st (case2 b) -find-hoare-next key node@(N key₁ tree tree₁) mt st eq next _ | tri< a ¬b ¬c = next tree ((left node) ∷ st) refl -find-hoare-next key node@(N key₁ tree tree₁) mt st eq next _ | tri> ¬a ¬b c = next tree₁ ((right node) ∷ st) refl - -find-hoare-loop : {n m : Level} {A : Set n} {t : Set m} → (hight key : ℕ) → (tree mt : bt A ) → (st : List (bt-path' A)) → (findLoopInv {n} {m} {A} {t} tree mt st) - → (exit : (nt : bt A) → (ns : List (bt-path' A)) → (nt ≡ L) ∨ (key ≡ tree->key nt) → t) → t -find-hoare-loop zero key tree mt st eq exit with key ≟ (tree->key tree) -find-hoare-loop zero key tree mt st eq exit | yes p = exit tree st (case2 p) -find-hoare-loop zero key tree mt st eq exit | no ¬p = exit tree st (case1 {!!}) - -find-hoare-loop (suc h) key otr lf@(L) st eq exit = exit lf st (case1 refl) -find-hoare-loop (suc h) key otr tr@(N key₁ tree tree₁) st eq exit = find-hoare-next key otr tr st {!!} ((λ tr1 st1 eq → find-hoare-loop h key otr tr1 st1 {!!} exit)) exit - - -- bt-replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt-path A) → (bt A → t ) → t -- bt-replace {n} {m} {A} {t} ikey otree stack next = bt-replace0 otree where -- bt-replace1 : bt A → List (bt-path A) → t