Mercurial > hg > Gears > GearsAgda
changeset 579:821d04c0770b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 Nov 2019 17:34:46 +0900 |
parents | 7bacba816277 |
children | 99429fdb3b8b |
files | hoareRedBlackTree.agda logic.agda |
diffstat | 2 files changed, 79 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareRedBlackTree.agda Sat Nov 02 16:37:27 2019 +0900 +++ b/hoareRedBlackTree.agda Sat Nov 02 17:34:46 2019 +0900 @@ -12,6 +12,7 @@ open import Relation.Binary open import Relation.Binary.PropositionalEquality +open import logic record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where @@ -114,15 +115,17 @@ ; nodeStack = emptySingleLinkedStack } -popAllnode : {n m : Level } {a : Set n} → RedBlackTree {n} {m} a → Maybe (Node a) -popAllnode {n} {m} {a} tree = popAllNode1 (nodeStack tree) where - popAllNode1 : SingleLinkedStack (Node a ) → Maybe (Node a) - popAllNode1 [] = nothing - popAllNode1 (x ∷ t) = just {!!} +popAllNode1 : {n : Level } {a : Set n} → SingleLinkedStack (Node a ) → Node a → Maybe (Node a) +popAllNode1 [] r = nothing +popAllNode1 (x ∷ t) r with popAllNode1 t r +... | ttt = {!!} -record findNodeInvariant {n m : Level } {a : Set n} {t : Set m} (ordinal now : RedBlackTree {n} {m} a ) : Set (m Level.⊔ n) where +popAllnode : {n m : Level } {a : Set n} → RedBlackTree {n} {m} a → RedBlackTree {n} {m} a → Set +popAllnode {n} {m} {a} now original = {!!} + +record findNodeInvariant {n m : Level } {a : Set n} {t : Set m} (now original : RedBlackTree {n} {m} a ) : Set (m Level.⊔ n) where field - tree+stack : popAllnode now ≡ root ordinal + tree+stack : popAllnode now original
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/logic.agda Sat Nov 02 17:34:46 2019 +0900 @@ -0,0 +1,69 @@ +module logic where + +open import Level +open import Relation.Nullary +open import Relation.Binary +open import Data.Empty + + +data Bool : Set where + true : Bool + false : Bool + +record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where + field + proj1 : A + proj2 : B + +data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where + case1 : A → A ∨ B + case2 : B → A ∨ B + +_⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m) +_⇔_ A B = ( A → B ) ∧ ( B → A ) + +contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A +contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a ) + +double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A +double-neg A notnot = notnot A + +double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A +double-neg2 notnot A = notnot ( double-neg A ) + +de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) ) +de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and )) +de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and )) + +dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B +dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a ) +dont-or {A} {B} (case2 b) ¬A = b + +dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A +dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b ) +dont-orb {A} {B} (case1 a) ¬B = a + + +infixr 130 _∧_ +infixr 140 _∨_ +infixr 150 _⇔_ + +_/\_ : Bool → Bool → Bool +true /\ true = true +_ /\ _ = false + +_\/_ : Bool → Bool → Bool +false \/ false = false +_ \/ _ = true + +not_ : Bool → Bool +not true = false +not false = true + +_<=>_ : Bool → Bool → Bool +true <=> true = true +false <=> false = true +_ <=> _ = false + +infixr 130 _\/_ +infixr 140 _/\_