Mercurial > hg > Gears > GearsAgda
changeset 610:8239583dac0b
add one more stack
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 04 Nov 2021 23:52:05 +0900 |
parents | 79418701a283 |
children | db42d1033857 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 28 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Thu Nov 04 16:35:11 2021 +0900 +++ b/hoareBinaryTree.agda Thu Nov 04 23:52:05 2021 +0900 @@ -31,7 +31,7 @@ data bt {n : Level} (A : Set n) : Set n where leaf : bt A node : (key : ℕ) → (value : A) → - (left : bt A ) → (write : bt A ) → bt A + (left : bt A ) → (right : bt A ) → bt A bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ bt-depth leaf = 0 @@ -81,22 +81,18 @@ treeInvariantTest1 = treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) -stackInvariant : {n : Level} {A : Set n} → (stack : List (bt A)) → Set n -stackInvariant {_} {A} [] = Lift _ ⊤ -stackInvariant {_} {A} (leaf ∷ stack) = Lift _ ⊤ -stackInvariant {_} {A} (node key value leaf leaf ∷ []) = Lift _ ⊤ -stackInvariant {_} {A} (node key value _ (node _ _ _ _) ∷ []) = Lift _ ⊥ -stackInvariant {_} {A} (node key value (node _ _ _ _) _ ∷ []) = Lift _ ⊥ -stackInvariant {_} {A} (x ∷ node key value leaf leaf ∷ tail ) = Lift _ ⊥ -stackInvariant {_} {A} (x ∷ tail @ (node key value leaf tree ∷ _) ) = (tree ≡ x) ∧ stackInvariant tail -stackInvariant {_} {A} (x ∷ tail @ (node key value tree leaf ∷ _) ) = (tree ≡ x) ∧ stackInvariant tail -stackInvariant {_} {A} (x ∷ tail @ (node key value left right ∷ _ )) = ( (left ≡ x) ∧ stackInvariant tail) ∨ ( (right ≡ x) ∧ stackInvariant tail) -stackInvariant {_} {A} s = Lift _ ⊥ +stackInvariant : {n : Level} {A : Set n} → (tree : bt A) → (stack : List (bt A)) → Set n +stackInvariant {_} {A} _ [] = Lift _ ⊤ +stackInvariant {_} {A} tree (tree1 ∷ [] ) = tree1 ≡ tree +stackInvariant {_} {A} tree (x ∷ tail @ (node key value leaf right ∷ _) ) = (right ≡ x) ∧ stackInvariant tree tail +stackInvariant {_} {A} tree (x ∷ tail @ (node key value left leaf ∷ _) ) = (left ≡ x) ∧ stackInvariant tree tail +stackInvariant {_} {A} tree (x ∷ tail @ (node key value left right ∷ _ )) = ( (left ≡ x) ∧ stackInvariant tree tail) ∨ ( (right ≡ x) ∧ stackInvariant tree tail) +stackInvariant {_} {A} tree s = Lift _ ⊥ findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → treeInvariant tree ∧ stackInvariant stack - → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant stack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant stack → t ) → t + → treeInvariant tree ∧ stackInvariant tree stack + → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack → t ) → t findP key leaf st Pre _ exit = exit leaf st {!!} findP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ findP key n st Pre _ exit | tri≈ ¬a b ¬c = exit n st {!!} @@ -105,15 +101,15 @@ replaceP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → (tree : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant stack - → (next : ℕ → A → (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant stack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → treeInvariant tree1 → t) → t -replaceP key value tree [] Pre next exit = exit tree {!!} -replaceP key value tree (leaf ∷ st) Pre next exit = next key value tree st {!!} {!!} -replaceP key value tree (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st {!!} {!!} -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st {!!} {!!} -... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st {!!} {!!} + → (key : ℕ) → (value : A) → (tree : bt A) → (stack rstack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack + → (next : ℕ → A → (tree1 : bt A) → (stack rstack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree stack ∧ stackInvariant tree1 rstack → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack → t) → t +replaceP key value tree [] rs Pre next exit = exit tree {!!} {!!} +replaceP key value tree (leaf ∷ st) rs Pre next exit = next key value tree st {!!} {!!} {!!} +replaceP key value tree (node key₁ value₁ left right ∷ st) rs Pre next exit with <-cmp key key₁ +... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st {!!} {!!} {!!} +... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st {!!} {!!} {!!} +... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st {!!} {!!} {!!} open import Relation.Binary.Definitions @@ -139,12 +135,12 @@ open _∧_ -insertTreeP : {n : Level} {A : Set n} {t : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree : bt A) → treeInvariant tree → t ) → t -insertTreeP {n} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj2 p)} (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , lift tt ⟫ - (λ p P loop → findP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) - (λ t s P → TerminatingLoopS (bt A ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj2 p)} (λ p → bt-depth (proj1 p)) ⟪ t , s ⟫ P - (λ p P1 loop → replaceP key value (proj1 p) (proj2 p) P1 (λ k v t s P2 lt → loop ⟪ t , s ⟫ P2 lt) exit) +insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack → t ) → t +insertTreeP {n} {m} {A} {t} tree key value P exit = + TerminatingLoopS (bt A ∧ List (bt A) ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p)) ∧ {!!} } (λ p → bt-depth (proj1 p)) ⟪ tree , ⟪ [] , {!!} ⟫ ⟫ ⟪ P , ⟪ lift tt , {!!} ⟫ ⟫ + (λ p P loop → findP key (proj1 p) (proj1 (proj2 p)) {!!} (λ t s P1 lt → loop ⟪ t , ⟪ s , {!!} ⟫ ⟫ {!!} lt ) + (λ t s P → TerminatingLoopS (bt A ∧ List (bt A) ∧ bt A) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p))} (λ p → bt-depth (proj1 p)) ⟪ t , ⟪ s , {!!} ⟫ ⟫ P + (λ p P1 loop → replaceP key value (proj1 p) (proj1 (proj2 p)) {!!} P1 (λ k v t s s1 P2 lt → loop ⟪ t , ⟪ s , {!!} ⟫ ⟫ {!!} {!!} ) exit) ) ) top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A @@ -156,11 +152,5 @@ insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤ insertTreeSpec1 {n} {A} tree key value P = - TerminatingLoopS (bt A ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj2 p)} (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , lift tt ⟫ - $ λ p P loop → findP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) - $ λ t s P → TerminatingLoopS (bt A ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj2 p)} (λ p → bt-depth (proj1 p)) ⟪ t , s ⟫ P - $ λ p P1 loop → replaceP key value (proj1 p) (proj2 p) P1 (λ k v t s P2 lt → loop ⟪ t , s ⟫ P2 lt) - $ λ t1 P2 → TerminatingLoopS (bt A ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj2 p)} (λ p → bt-depth (proj1 p)) ⟪ t1 , [] ⟫ ⟪ P2 , lift tt ⟫ - $ λ p P3 loop → findP key (proj1 p) (proj2 p) P3 (λ t s P3 lt → loop ⟪ t , s ⟫ P3 lt ) - $ λ t2 s1 P4 → insertTreeSpec0 t2 value {!!} - + insertTreeP tree key value P (λ (tree₁ : bt A) (stack : List (bt A)) + (P1 : treeInvariant tree₁ ∧ stackInvariant tree₁ stack ) → insertTreeSpec0 tree₁ value {!!} )