Mercurial > hg > Gears > GearsAgda
changeset 759:8435718138d1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 May 2023 16:55:21 +0900 |
parents | 2488a3402c19 |
children | 927c02120a73 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 13 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Tue May 02 07:42:19 2023 +0900 +++ b/hoareBinaryTree1.agda Wed May 03 16:55:21 2023 +0900 @@ -738,24 +738,25 @@ -- if we have replacedNode on RBTree, we have RBtreeInvariant replaceRBP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {d0 : ℕ} - → (orig tree repl : bt (Color ∧ A)) {d0 : ℕ} - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant repl dr - → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) - → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key tree) repl - → (next : {key2 d2 : ℕ} {c2 : Color} -- rotating case + → (key : ℕ) → (value : A) + → (to tr rot rr : bt (Color ∧ A)) + → {d0 : ℕ} → RBtreeInvariant to d0 + → {d : ℕ} → RBtreeInvariant tr d → {dr : ℕ} → RBtreeInvariant rr dr + → (stack : List (bt (Color ∧ A))) → stackInvariant key tr to stack + → rotatedTree tr rot + → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr + → (next : {key2 d2 : ℕ} {c2 : Color} → (to tr rot rr : bt (Color ∧ A)) - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant rr dr + → RBtreeInvariant to d0 + → {d : ℕ} → RBtreeInvariant tr d → {dr : ℕ} → RBtreeInvariant rr dr → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 → rotatedTree tr rot → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr → length stack1 < length stack → t ) → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) ) → {d : ℕ} → RBtreeInvariant repl d - → (ri : rotatedTree orig rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t -replaceRBP {n} {m} {A} {t} key value orig tree repl rbio rbit rbir stack si ri next exit = insertCase1 where + → (ri : rotatedTree to rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t +replaceRBP {n} {m} {A} {t} key value orig tree rot repl rbio rbit rbir stack si roti {c} ri next exit = ? where insertCase2 : (tree parent uncle grand : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) → (pg : ParentGrand tree parent uncle grand ) → t @@ -790,7 +791,7 @@ -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) insertCase1 : t insertCase1 with stackToPG tree orig stack si - ... | case1 eq = exit repl repl rbir {!!} (subst₂ (λ j k → replacedTree key ⟪ {!!} , value ⟫ j k ) {!!} {!!} r-node ) + ... | case1 eq = exit rot repl rbir {!!} ? -- (subst₂ (λ j k → replacedTree key ⟪ {!!} , value ⟫ j k ) {!!} {!!} r-node ) ... | case2 (case1 eq ) = {!!} ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg)