Mercurial > hg > Gears > GearsAgda
changeset 588:8627d35d4bff
add data bt', and some function
author | ryokka |
---|---|
date | Thu, 05 Dec 2019 20:38:54 +0900 |
parents | f103f07c0552 |
children | 37f5826ca7d2 |
files | hoareBinaryTree.agda hoareRedBlackTree.agda |
diffstat | 2 files changed, 63 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Thu Dec 05 18:11:22 2019 +0900 +++ b/hoareBinaryTree.agda Thu Dec 05 20:38:54 2019 +0900 @@ -5,7 +5,7 @@ open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -open import Data.Maybe.Properties +-- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product @@ -45,20 +45,79 @@ tt = pushSigmaStack 3 (true ∷ []) (λ st → st) +_iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set +d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d)) + +iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y +iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } + + {-- data A B : C → D → Set where の A B と C → D の差は? --} -data bt {n : Level} {a : Set n} : Set n where + +data bt {n : Level} {a : Set n} : Set n where -- (a : Setn) bt-leaf : ⦃ l u : ℕ ⦄ → l ≤ u → bt bt-node : ⦃ l l' u u' : ℕ ⦄ → (d : ℕ) → bt {n} {a} → bt {n} {a} → l ≤ l' → u' ≤ u → bt +data bt' {n : Level} (A : Set n) : (key : ℕ) → Set n where -- (a : Setn) + bt'-leaf : (key : ℕ) → bt' A key + bt'-node : { l r : ℕ } → (key : ℕ) → (value : A) → + bt' {n} A l → bt' {n} A r → l < key → key < r → bt' A key + +data bt'-path {n : Level} (A : Set n) : Set n where -- (a : Setn) + bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key < left-key) → bt'-path A + bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key < key) → bt'-path A + bt'-null : bt'-path A + + +test = bt'-left {Z} {ℕ} 3 {5} (bt'-leaf 5) (s≤s (s≤s (s≤s (s≤s z≤n)))) + +bt-find' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' ℕ tn ) → List (bt'-path A ) → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t +bt-find' key (bt'-leaf key₁) stack next = {!!} +bt-find' key (bt'-node key₁ value tree tree₁ x x₁) stack next with <-cmp key key₁ +bt-find' {n} {m} {A} {t} key tr@(bt'-node {l} {r} key₁ value tree tree₁ x x₁) stack next | tri< a ¬b ¬c = + bt-find' {n} {m} {A} {t} key tree ( (bt'-left {n} {A} key {key₁} {!!} {!!} ) ∷ stack) next +bt-find' key found@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri≈ ¬a b ¬c = next {!!} stack +bt-find' key (bt'-node key₁ value tree tree₁ x x₁) stack next | tri> ¬a ¬b c = {!!} + + +bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' ℕ tn ) → List (bt'-path A ) → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t +bt-replace' = {!!} + +bt-find'-assert1 : {n m : Level} {A : Set n} {t : Set m} → Set n +bt-find'-assert1 {n} {m} {A} {t} = (key : ℕ) → (val : A) → bt-find' key {!!} {!!} (λ tree stack → {!!}) + + +-- find'-support : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt' {n} {a} ) → SingleLinkedStack (bt' {n} {a} ) → ( (bt' {n} {a} ) → SingleLinkedStack (bt' {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t + +-- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key leaf@(bt'-leaf x) st cg = cg leaf st nothing +-- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt'-node d tree₁ tree₂ x x₁) st cg with <-cmp key d +-- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt'-node d tree₁ tree₂ x x₁) st cg | tri≈ ¬a b ¬c = cg node st (just (d , iso-intro {n} {a} ¬a ¬c)) + +-- find'-support {n} {m} {a} {t} key node@(bt'-node ⦃ nl ⦄ ⦃ l' ⦄ ⦃ nu ⦄ ⦃ u' ⦄ d L R x x₁) st cg | tri< a₁ ¬b ¬c = +-- pushSingleLinkedStack st node +-- (λ st2 → find'-support {n} {m} {a} {t} {{l'}} {{d}} key L st2 cg) + +-- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt'-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d L R x x₁) st cg | tri> ¬a ¬b c = pushSingleLinkedStack st node +-- (λ st2 → find'-support {n} {m} {a} {t} {{d}} {{lr'}} key R st2 cg) + + + lleaf : {n : Level} {a : Set n} → bt {n} {a} lleaf = (bt-leaf ⦃ 0 ⦄ ⦃ 3 ⦄ z≤n) +lleaf1 : {n : Level} {A : Set n} → (0 < 3) → (a : A) → (d : ℕ ) → bt' {n} A d +lleaf1 0<3 a d = bt'-leaf d + +test-node1 : bt' ℕ 3 +test-node1 = bt'-node (3) 3 (bt'-leaf 2) (bt'-leaf 4) (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s (s≤s z≤n)))) + + rleaf : {n : Level} {a : Set n} → bt {n} {a} -rleaf = (bt-leaf ⦃ 3 ⦄ ⦃ 4 ⦄ (n≤1+n 3)) +rleaf = (bt-leaf ⦃ 3 ⦄ ⦃ 3 ⦄ (s≤s (s≤s (s≤s z≤n)))) test-node : {n : Level} {a : Set n} → bt {n} {a} test-node {n} {a} = (bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ 4 ⦄ ⦃ 4 ⦄ 3 lleaf rleaf z≤n ≤-refl ) @@ -68,12 +127,6 @@ -_iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set -d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d)) - -iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y -iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } - -- search の {{ l }} {{ u }} はその時みている node の 大小。 l が小さく u が大きい -- ここでは d が現在の node のkey値なので比較後のsearch では値が変わる bt-search : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → bt {n} {a} → (Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t @@ -161,16 +214,13 @@ replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri< a₁ ¬b ¬c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ subt x₃ x₄ x₅) st cg replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri≈ ¬a b ¬c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ subt x₃ x₄ x₅) st cg replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri> ¬a ¬b c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ x₃ subt x₄ x₅) st cg - replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree (x ∷ st) cg = replace-helper ⦃ l ⦄ ⦃ u ⦄ tree st cg -- Unknown Case - bt-replace : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → ( (bt {n} {a} ) → t ) → t - bt-replace {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d tree st eqP cg = replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ ((bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ d ⦄ ⦃ d ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n ) (bt-leaf ⦃ d ⦄ ⦃ d ⦄ ≤-refl) z≤n ≤-refl)) st cg
--- a/hoareRedBlackTree.agda Thu Dec 05 18:11:22 2019 +0900 +++ b/hoareRedBlackTree.agda Thu Dec 05 20:38:54 2019 +0900 @@ -7,7 +7,7 @@ open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -open import Data.Maybe.Properties +-- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product