Mercurial > hg > Gears > GearsAgda
changeset 496:8e133a3938c0
fix agda
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Dec 2017 20:51:00 +0900 |
parents | 2e7ea81e5943 |
children | 01f0a2cdcc43 |
files | src/parallel_execution/stack.agda |
diffstat | 1 files changed, 56 insertions(+), 56 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/stack.agda Sun Dec 31 04:36:20 2017 +0900 +++ b/src/parallel_execution/stack.agda Sun Dec 31 20:51:00 2017 +0900 @@ -1,27 +1,27 @@ -module stack where +open import Level renaming (suc to succ ) +module stack where open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat -open import Level renaming (suc to succ ; zero to Zero) ex : 1 + 2 ≡ 3 ex = refl -data Bool : Set where +data Bool {n : Level } : Set (succ n) where True : Bool False : Bool -record _∧_ {a b : Set} : Set where +record _∧_ {n : Level } {a b : Set n} : Set n where field pi1 : a pi2 : b -data Maybe (a : Set) : Set where +data Maybe {n : Level } (a : Set n) : Set n where Nothing : Maybe a Just : a -> Maybe a -record Stack {a t : Set} (stackImpl : Set) : Set where +record Stack {n : Level } {a : Set n } {t : Set (succ n) }(stackImpl : Set n ) : Set (succ n ) where field stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t @@ -31,35 +31,35 @@ get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t open Stack -pushStack : {a t si : Set} -> Stack si -> a -> (Stack si -> t) -> t -pushStack {a} {t} s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) +pushStack : {n : Level } {t : Set (succ n)} {a si : Set n} -> Stack si -> a -> (Stack si -> t) -> t +pushStack {t} {a} s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) -popStack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> t) -> t -popStack {a} {t} s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) +popStack : {n : Level } { t : Set (succ n)} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t +popStack {t} {a} s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) -pop2Stack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t -pop2Stack {a} {t} s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) +pop2Stack : {n : Level } { t : Set (succ n)} { a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t +pop2Stack {t} {a} s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) -getStack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> t) -> t -getStack {a} {t} s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) +getStack : {n : Level } {t : Set (succ n)} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t +getStack {t} {a} s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) -get2Stack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t -get2Stack {a} {t} s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) +get2Stack : {n : Level } {t : Set (succ n)} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t +get2Stack {t} {a} s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) -data Element (a : Set) : Set where +data Element {n : Level } (a : Set n) : Set n where cons : a -> Maybe (Element a) -> Element a -datum : {a : Set} -> Element a -> a +datum : {n : Level } {a : Set n} -> Element a -> a datum (cons a _) = a -next : {a : Set} -> Element a -> Maybe (Element a) +next : {n : Level } {a : Set n} -> Element a -> Maybe (Element a) next (cons _ n) = n {- -- cannot define recrusive record definition. so use linked list with maybe. -record Element {l : Level} (a : Set l) : Set (suc l) where +record Element {l : Level} (a : Set n l) : Set n (suc l) where field datum : a -- `data` is reserved by Agda. next : Maybe (Element a) @@ -67,19 +67,19 @@ -record SingleLinkedStack (a : Set) : Set where +record SingleLinkedStack {n : Level } (a : Set n) : Set n where field top : Maybe (Element a) open SingleLinkedStack -pushSingleLinkedStack : {Data t : Set} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t +pushSingleLinkedStack : {n : Level } {t : Set (succ n) } {Data : Set n} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next stack1 where element = cons datum (top stack) stack1 = record {top = Just element} -popSingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t +popSingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack1 (Just data1) @@ -87,40 +87,40 @@ data1 = datum d stack1 = record { top = (next d) } -pop2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t -pop2SingleLinkedStack {a} stack cs with (top stack) +pop2SingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t +pop2SingleLinkedStack {n} {t} {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing ... | Just d = pop2SingleLinkedStack' stack cs where - pop2SingleLinkedStack' : {t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t + pop2SingleLinkedStack' : {n : Level } {t : Set (succ n) } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t pop2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs (record {top = (next d)}) (Just (datum d)) (Just (datum d1)) -getSingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t +getSingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t getSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack (Just data1) where data1 = datum d -get2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t -get2SingleLinkedStack {a} stack cs with (top stack) +get2SingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t +get2SingleLinkedStack {_} {t} {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing ... | Just d = get2SingleLinkedStack' stack cs where - get2SingleLinkedStack' : {t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t + get2SingleLinkedStack' : {n : Level} {t : Set (succ n) } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t get2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs stack (Just (datum d)) (Just (datum d1)) -emptySingleLinkedStack : {a : Set} -> SingleLinkedStack a +emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} -createSingleLinkedStack : {a b : Set} -> Stack {a} {b} (SingleLinkedStack a) +createSingleLinkedStack : {n : Level } {t : Set (succ n) } {a : Set n} -> Stack {n} {a} {t} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack @@ -130,19 +130,19 @@ } -test01 : {a : Set} -> SingleLinkedStack a -> Maybe a -> Bool +test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False -test02 : {a : Set} -> SingleLinkedStack a -> Bool -test02 stack = (popSingleLinkedStack stack) test01 +test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool +test02 stack = popSingleLinkedStack stack test01 -test03 : {a : Set} -> a -> Bool +test03 : {n : Level } {a : Set n} -> a -> Bool test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 -testStack01 : {a : Set} -> a -> Bool +testStack01 : {n : Level } {a : Set n} -> a -> Bool testStack01 v = pushStack createSingleLinkedStack v ( \s -> popStack s (\s1 d1 -> True)) @@ -166,49 +166,49 @@ testStack04 : Bool testStack04 = testStack02 (\s -> testStack03 s testStack032) -testStack05 : Set -testStack05 = testStack04 ≡ True +testStack05 : { n : Level} -> Set n +testStack05 = {!!} -- testStack04 ≡ True -lemma : {A : Set} {a : A} -> test03 a ≡ False +lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False lemma = refl -id : {A : Set} -> A -> A +id : {n : Level} {A : Set n} -> A -> A id a = a -n-push : {A : Set} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A +n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-push zero s = s -n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s -> s) +n-push {_} {A} {a} (suc n) s = {!!} -- pushSingleLinkedStack (n-push {_} {A} {a} n s) a (\s -> ?) -n-pop : {A : Set} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A +n-pop : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-pop zero s = s -n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) +n-pop {_} {A} {a} (suc n) s = {!!} -- popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) open ≡-Reasoning -push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) -> popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s +push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> {!!} -- popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s push-pop-equiv s = refl -push-and-n-pop : {A : Set} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s +push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> {!!} -- n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s push-and-n-pop zero s = refl -push-and-n-pop {A} {a} (suc n) s = begin - n-pop {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) +push-and-n-pop {_} {A} {a} (suc n) s = begin + {!!} -- n-pop {_} {n} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) ≡⟨ refl ⟩ - popSingleLinkedStack (n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) - ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s)) (push-and-n-pop n s) ⟩ - popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) + {!!} -- popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) + ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> {!!})) (push-and-n-pop n s) ⟩ + {!!} -- popSingleLinkedStack (n-pop {_} {n} {A} {a} n s) (\s _ -> s) ≡⟨ refl ⟩ - n-pop {A} {a} (suc n) s + {!!} -- n-pop {_} {n} {A} {a} (suc n) s ∎ -n-push-pop-equiv : {A : Set} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s +n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> {!!} -- (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s n-push-pop-equiv zero s = refl n-push-pop-equiv {A} {a} (suc n) s = begin n-pop {A} {a} (suc n) (n-push (suc n) s) ≡⟨ refl ⟩ - n-pop {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) + {!!} -- n-pop {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) ≡⟨ push-and-n-pop n (n-push n s) ⟩ n-pop {A} {a} n (n-push n s) ≡⟨ n-push-pop-equiv n s ⟩ @@ -216,5 +216,5 @@ ∎ -n-push-pop-equiv-empty : {A : Set} {a : A} -> (n : ℕ) -> n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack +n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack