Mercurial > hg > Gears > GearsAgda
changeset 749:923f72af015c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Apr 2023 19:13:13 +0900 |
parents | 1d7803a2c4c0 |
children | 61e16b7489b8 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 49 insertions(+), 30 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Tue Apr 25 16:50:12 2023 +0900 +++ b/hoareBinaryTree1.agda Tue Apr 25 19:13:13 2023 +0900 @@ -553,7 +553,8 @@ -- rb-leaf : replacedRBTree key value leaf (node key ⟪ Black , value ⟫ leaf leaf) color : {n : Level} (A : Set n) → (rb : bt (Color ∧ A)) → Color -color {n} A rb = ? +color {n} A leaf = Red +color {n} A (node key ⟪ c , v ⟫ rb rb₁) = c RB→bt : {n : Level} (A : Set n) → (rb : bt (Color ∧ A)) → bt A RB→bt {n} A leaf = leaf @@ -587,48 +588,50 @@ → rotatedTree d d₁ → rotatedTree e e₁ → rotatedTree c c₁ → rotatedTree (node kb vb d (node ka va e c) ) (node ka va (node kb vb d₁ e₁) c₁) -record PG {n : Level } (A : Set n) (stack : List (bt A)) : Set n where +record PG {n : Level } (A : Set n) (self : bt A) (stack : List (bt A)) : Set n where field - self parent grand : bt A + parent grand : bt A pg : ParentGrand self parent grand rest : List (bt A) stack=gp : stack ≡ ( self ∷ parent ∷ grand ∷ rest ) stackToPG : {n : Level} {A : Set n} → {key : ℕ } → (tree orig : bt A ) → (stack : List (bt A)) → stackInvariant key tree orig stack - → ( stack ≡ orig ∷ [] ) ∨ ( stack ≡ tree ∷ orig ∷ [] ) ∨ PG A stack + → ( stack ≡ orig ∷ [] ) ∨ ( stack ≡ tree ∷ orig ∷ [] ) ∨ PG A tree stack stackToPG {n} {A} {key} tree .tree .(tree ∷ []) s-nil = case1 refl stackToPG {n} {A} {key} tree .(node _ _ _ tree) .(tree ∷ node _ _ _ tree ∷ []) (s-right x s-nil) = case2 (case1 refl) stackToPG {n} {A} {key} tree .(node k2 v2 t5 (node k1 v1 t2 tree)) (tree ∷ node _ _ _ tree ∷ .(node k2 v2 t5 (node k1 v1 t2 tree) ∷ [])) (s-right {.tree} {.(node k2 v2 t5 (node k1 v1 t2 tree))} {t2} {k1} {v1} x (s-right {.(node k1 v1 t2 tree)} {.(node k2 v2 t5 (node k1 v1 t2 tree))} {t5} {k2} {v2} x₁ s-nil)) = case2 (case2 - record { self = tree ; parent = node k1 v1 t2 tree ; grand = _ ; pg = s2-1s2p refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 t2 tree ; grand = _ ; pg = s2-1s2p refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig (tree ∷ node _ _ _ tree ∷ .(node k2 v2 t5 (node k1 v1 t2 tree) ∷ _)) (s-right {.tree} {.orig} {t2} {k1} {v1} x (s-right {.(node k1 v1 t2 tree)} {.orig} {t5} {k2} {v2} x₁ (s-right x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 t2 tree ; grand = _ ; pg = s2-1s2p refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 t2 tree ; grand = _ ; pg = s2-1s2p refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig (tree ∷ node _ _ _ tree ∷ .(node k2 v2 t5 (node k1 v1 t2 tree) ∷ _)) (s-right {.tree} {.orig} {t2} {k1} {v1} x (s-right {.(node k1 v1 t2 tree)} {.orig} {t5} {k2} {v2} x₁ (s-left x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 t2 tree ; grand = _ ; pg = s2-1s2p refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 t2 tree ; grand = _ ; pg = s2-1s2p refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree .(node k2 v2 (node k1 v1 t1 tree) t2) .(tree ∷ node k1 v1 t1 tree ∷ node k2 v2 (node k1 v1 t1 tree) t2 ∷ []) (s-right {_} {_} {t1} {k1} {v1} x (s-left {_} {_} {t2} {k2} {v2} x₁ s-nil)) = case2 (case2 - record { self = tree ; parent = node k1 v1 t1 tree ; grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 t1 tree ; grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 t1 tree ∷ node k2 v2 (node k1 v1 t1 tree) t2 ∷ _) (s-right {_} {_} {t1} {k1} {v1} x (s-left {_} {_} {t2} {k2} {v2} x₁ (s-right x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 t1 tree ; grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 t1 tree ; grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 t1 tree ∷ node k2 v2 (node k1 v1 t1 tree) t2 ∷ _) (s-right {_} {_} {t1} {k1} {v1} x (s-left {_} {_} {t2} {k2} {v2} x₁ (s-left x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 t1 tree ; grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 t1 tree ; grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree .(node _ _ tree _) .(tree ∷ node _ _ tree _ ∷ []) (s-left {_} {_} {t1} {k1} {v1} x s-nil) = case2 (case1 refl) stackToPG {n} {A} {key} tree .(node _ _ _ (node k1 v1 tree t1)) .(tree ∷ node k1 v1 tree t1 ∷ node _ _ _ (node k1 v1 tree t1) ∷ []) (s-left {_} {_} {t1} {k1} {v1} x (s-right x₁ s-nil)) = case2 (case2 - record { self = tree ; parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s12p refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s12p refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ _ (node k1 v1 tree t1) ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-right x₁ (s-right x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s12p refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s12p refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ _ (node k1 v1 tree t1) ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-right x₁ (s-left x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s12p refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s12p refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree .(node _ _ (node k1 v1 tree t1) _) .(tree ∷ node k1 v1 tree t1 ∷ node _ _ (node k1 v1 tree t1) _ ∷ []) (s-left {_} {_} {t1} {k1} {v1} x (s-left x₁ s-nil)) = case2 (case2 - record { self = tree ; parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ (node k1 v1 tree t1) _ ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-left x₁ (s-right x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } ) stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ (node k1 v1 tree t1) _ ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-left x₁ (s-left x₂ si))) = case2 (case2 - record { self = tree ; parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } ) + record { parent = node k1 v1 tree t1 ; grand = _ ; pg = s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } ) -rbsi-len : {n : Level} {A : Set n} {orig parent grand : bt A} - → ParentGrand orig parent grand → ℕ -rbsi-len {n} {A} {s} {p} {g} st = ? +PGtoRBinvariant : {n : Level} {A : Set n} → {key d0 ds dp dg : ℕ } → (tree orig : bt (Color ∧ A) ) + → RBtreeInvariant orig d0 + → (stack : List (bt (Color ∧ A))) → (pg : PG (Color ∧ A) tree stack ) + → RBtreeInvariant tree ds ∧ RBtreeInvariant (PG.parent pg) dp ∧ RBtreeInvariant (PG.grand pg) dg +PGtoRBinvariant = ? findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → {d d0 : ℕ} → RBtreeInvariant tree0 d0 @@ -652,7 +655,7 @@ → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 repl1 : bt (Color ∧ A)) → (si1 : ParentGrand ? ? ?) → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1)) - → rbsi-len si1 < rbsi-len si → t ) + → length ? < length ? → t ) → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 repl1 : bt (Color ∧ A)) → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1)) → t ) → t @@ -660,8 +663,10 @@ insertCase51 : (key1 : ℕ) (si : ParentGrand ? ? ? ) → t insertCase51 = ? +-- if we have replacedNode on RBTree, we have RBtreeInvariant + replaceRBP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {key0 key1 d0 d1 : ℕ} {c0 c1 : Color} + → (key : ℕ) → (value : A) → {d0 : ℕ} → (orig tree : bt (Color ∧ A)) {d0 : ℕ} → RBtreeInvariant orig d0 → {d : ℕ} → RBtreeInvariant tree d → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) @@ -674,17 +679,31 @@ → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) ) → {d : ℕ} → RBtreeInvariant repl d → (ri : rotatedTree orig rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t -replaceRBP {n} {m} {A} {t} key value {_} {key1} orig tree stack si next exit = ? where - insertCase2 : {k0 k1 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (tree parent grand : bt (Color ∧ A)) - → (stack : List (bt (Color ∧ A))) → (tr to : bt (Color ∧ A)) → (si : stackInvariant key tr to stack ) +replaceRBP {n} {m} {A} {t} key value orig tree rbio rbit stack si next exit = insertCase1 where + insertCase2 : (tree parent grand : bt (Color ∧ A)) + → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) → (pg : ParentGrand tree parent grand ) → t - insertCase2 tree parent grand stack tr to = ? - insertCase1 : (stack : List (bt (Color ∧ A))) → (to tr : bt (Color ∧ A)) → (si : stackInvariant key tr to stack ) → t - insertCase1 stack to tr si with stackToPG tr to stack si + insertCase2 tree parent grand stack si pg with color A parent + ... | Black = ? -- tree stuctre is preserved + ... | Red = insertCase3 grand refl where + -- + -- in some case, stack is poped and loop to replaceRBP + -- it means, we have to create replacedTree + insertCase3 : ( tr : bt (Color ∧ A) ) → tr ≡ grand → t + insertCase3 leaf eq = ? + insertCase3 (node kg value leaf tr₁) eq = ? + insertCase3 (node kg value (node ku ⟪ Red , vu ⟫ tr tr₂) tr₁) eq with <-cmp kg ku + ... | tri< a ¬b ¬c = ? + ... | tri≈ ¬a b ¬c = ? + ... | tri> ¬a ¬b c = ? + insertCase3 (node kg value (node ku ⟪ Black , vu ⟫ tr tr₂) tr₁) eq with <-cmp kg ku + ... | tri< a ¬b ¬c = ? + ... | tri≈ ¬a b ¬c = ? + ... | tri> ¬a ¬b c = ? + insertCase1 : t + insertCase1 with stackToPG tree orig stack si ... | case1 eq = ? ... | case2 (case1 eq ) = ? - ... | case2 (case2 pg) = insertCase2 ? ? ? ? ? ? ? (PG.pg pg) where - si00 : stackInvariant key ? ? ? - si00 = ? + ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.grand pg) stack si (PG.pg pg)