Mercurial > hg > Gears > GearsAgda
changeset 718:93ec11846a27
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 May 2022 09:27:13 +0900 |
parents | 52938e8a54a2 |
children | 3e93bcfc879e |
files | ModelChecking.agda hoareBinaryTree.agda |
diffstat | 2 files changed, 58 insertions(+), 63 deletions(-) [+] |
line wrap: on
line diff
--- a/ModelChecking.agda Wed May 11 09:56:11 2022 +0900 +++ b/ModelChecking.agda Mon May 16 09:27:13 2022 +0900 @@ -122,13 +122,6 @@ error : Data fail_next : Code -alloc-data : {n : Level} {t : Set n} → ( c : Context ) → ( Context → ℕ → t ) → t -alloc-data {n} {t} c next = next record c { mbase = mnext } mnext where - mnext = suc ( Context.mbase c ) - -new-data : {n : Level} {t : Set n} → ( c : Context ) → (ℕ → Data ) → ( Context → ℕ → t ) → t -new-data c x next = alloc-data c $ λ c1 n → insertTree (Context.memory c1) n (x n) ( λ bt → next record c1 { memory = bt } n ) - -- -- second level stub -- @@ -191,8 +184,6 @@ code_table C_pickup_lfork = Phil_pickup_rfork_sub code_table C_eating = Phil_eating_sub -open Context - step : {n : Level} {t : Set n} → List Context → (List Context → t) → t step {n} {t} [] next0 = next0 [] step {n} {t} (p ∷ ps) next0 = code_table (Context.next p) p ( λ code np → next0 (update-context ps np ++ ( record np { next = code } ∷ [] ))) where @@ -212,6 +203,44 @@ ; fail_next = C_nop } +alloc-data : {n : Level} {t : Set n} → ( c : Context ) → ( Context → ℕ → t ) → t +alloc-data {n} {t} c next = next record c { mbase = suc ( Context.mbase c ) } mnext where + mnext = suc ( Context.mbase c ) + +new-data : {n : Level} {t : Set n} → ( c : Context ) → (ℕ → Data ) → ( Context → ℕ → t ) → t +new-data c x next = alloc-data c $ λ c1 n → insertTree (Context.memory c1) n (x n) ( λ bt → next record c1 { memory = bt } n ) + +init-AtomicNat1 : {n : Level} {t : Set n} → Context → ( Context → AtomicNat → t ) → t +init-AtomicNat1 c1 next = new-data c1 ( λ ptr → D_AtomicNat (a ptr) ) $ λ c2 ptr → next c2 (a ptr) where + a : ℕ → AtomicNat + a ptr = record { ptr = ptr ; value = 0 } + +test21 : ℕ ∧ (bt (Data)) +test21 = init-AtomicNat1 init-context $ λ c1 left → alloc-data c1 + $ λ c n → ⟪ n , Context.memory c ⟫ where + a : ℕ → AtomicNat + a ptr = record { ptr = ptr ; value = 0 } + b : Maybe (List (bt Data)) → Maybe (bt Data) + b (just x) = head x + b nothing = nothing + d : bt Data → Maybe Data + d leaf = nothing + d (node key value t t₁) = just value + +test211 : test21 ≡ ⟪ 2 , node 1 (D_AtomicNat record { ptr = 1 ; value = 0 }) leaf leaf ⟫ +test211 = refl + +test212 : bt Data +test212 = insertTree (node 1 (D_AtomicNat record { ptr = 1 ; value = 0 }) leaf leaf ) 2 (D_AtomicNat record { ptr = 2 ; value = 0 }) + $ λ t → t + +test2 : List Context +test2 = init-AtomicNat1 init-context $ λ c left → alloc-data c + $ λ c n → insertTree (Context.memory c) n (D_AtomicNat (a n)) + $ λ bt → record c { memory = bt } ∷ [] where + a : ℕ → AtomicNat + a ptr = record { ptr = ptr ; value = 0 } + init-Phil-1 : (ps : List Context) → (left right : AtomicNat ) → List Context init-Phil-1 ps left right = new-data (c1 ps) ( λ ptr → D_Phil (p ptr) ) $ λ c ptr → record c { c_Phil-API = record { next = C_thinking ; impl = p ptr }} ∷ ps where p : ℕ → Phil @@ -220,11 +249,6 @@ c1 [] = init-context c1 (c2 ∷ ct) = c2 -init-AtomicNat1 : {n : Level} {t : Set n} → Context → ( Context → AtomicNat → t ) → t -init-AtomicNat1 c1 next = new-data c1 ( λ ptr → D_AtomicNat (a ptr) ) $ λ c2 ptr → next c2 (a ptr) where - a : ℕ → AtomicNat - a ptr = record { ptr = ptr ; value = 0 } - test-newdata : bt Data test-newdata = new-data init-context ( λ ptr → D_AtomicNat (a ptr) ) $ λ c n → Context.memory c where a : ℕ → AtomicNat @@ -250,36 +274,8 @@ tail1 (just x) = tail x tail1 nothing = nothing -test2 : List Context -test2 = init-AtomicNat1 init-context $ λ c left → alloc-data c - $ λ c n → insertTree (Context.memory c) n (D_AtomicNat (a n)) - $ λ bt → record c { memory = bt } ∷ [] where - a : ℕ → AtomicNat - a ptr = record { ptr = ptr ; value = 0 } - -test21 : ℕ ∧ (List (bt Data)) -test21 = init-AtomicNat1 init-context $ λ c1 left → alloc-data c1 - $ λ c n → find-loop n (Context.memory c) (Context.memory c ∷ []) $ λ t st → ⟪ n , st ⟫ where - a : ℕ → AtomicNat - a ptr = record { ptr = ptr ; value = 0 } - b : Maybe (List (bt Data)) → Maybe (bt Data) - b (just x) = head x - b nothing = nothing - -test22 : ℕ ∧ (Maybe (List (bt Data))) -test22 = init-AtomicNat1 init-context $ λ c1 left → alloc-data c1 - $ λ c n → find n (Context.memory c) (Context.memory c ∷ []) (λ t st → find n t st (λ t st → ⟪ 1 , tail st ⟫) (λ t st → ⟪ 2 , just st ⟫)) $ λ t st → ⟪ 0 , tail st ⟫ where - a : ℕ → AtomicNat - a ptr = record { ptr = ptr ; value = 0 } - -test23 : ℕ ∧ (Maybe ((bt Data))) -test23 = find n test01-tree (test01-tree ∷ []) (λ t st → find n t st (λ t st → ⟪ 1 , b (tail st) ⟫) (λ t st → ⟪ 2 , b ((just st)) ⟫)) $ λ t st → ⟪ 0 , b (tail st) ⟫ where - n = 2 - a : ℕ → AtomicNat - a ptr = record { ptr = ptr ; value = 0 } - b : Maybe (List (bt Data)) → Maybe (bt Data) - b (just x) = head x - b nothing = nothing +test22 : Context +test22 = init-AtomicNat1 init-context $ λ c left → init-AtomicNat1 c $ λ c1 right → c1 test : List Context test = init-AtomicNat1 init-context $ λ c left → init-AtomicNat1 c $ λ c1 right → init-Phil-1 (c1 ∷ []) left right
--- a/hoareBinaryTree.agda Wed May 11 09:56:11 2022 +0900 +++ b/hoareBinaryTree.agda Mon May 16 09:27:13 2022 +0900 @@ -56,7 +56,6 @@ find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) → (next : (tree1 : bt A) → (stack : List (bt A)) → t) → (exit : (tree1 : bt A) → (stack : List (bt A)) → t) → t -find key _ (leaf ∷ st) _ exit = exit leaf [] find key leaf st _ exit = exit leaf st find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁ find key n st _ exit | tri≈ ¬a refl ¬c = exit n st @@ -97,8 +96,8 @@ insertTest1 = insertTree leaf 1 1 (λ x → x ) insertTest2 = insertTree insertTest1 2 1 (λ x → x ) -insertTest3 = insertTree insertTest2 3 2 (λ x → x ) -insertTest4 = insertTree insertTest3 2 2 (λ x → x ) -- this is wrong +insertTest3 = insertTree insertTest2 3 3 (λ x → x ) +insertTest4 = insertTree insertTest3 1 4 (λ x → x ) -- this is wrong updateTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (empty : bt A → t ) → (next : A → bt A → t ) → t updateTree {_} {_} {A} {t} tree key value empty next = find-loop key tree ( tree ∷ [] ) @@ -260,22 +259,22 @@ treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ -record FindCond {n : Level} {A : Set n} (C : ℕ → bt A → Set n) : Set (Level.suc n) where - field - c1 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁ → C key tree - c2 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁ → C key tree₁ - - -findP0 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → {C : ℕ → bt A → Set n} → C key tree → FindCond C - → (next : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 - → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t -findP0 key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl) -findP0 key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁ -findP0 key n st Pre e _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) -findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) (FindCond.c1 e Pre a) depth-1< -findP0 key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) (FindCond.c2 e Pre c) depth-2< +-- record FindCond {n : Level} {A : Set n} (C : ℕ → bt A → Set n) : Set (Level.suc n) where +-- field +-- c1 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁ → C key tree +-- c2 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁ → C key tree₁ +-- +-- +-- findP0 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) +-- → {C : ℕ → bt A → Set n} → C key tree → FindCond C +-- → (next : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → bt-depth tree1 < bt-depth tree → t ) +-- → (exit : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 +-- → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t +-- findP0 key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl) +-- findP0 key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁ +-- findP0 key n st Pre e _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) +-- findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) (FindCond.c1 e Pre a) depth-1< +-- findP0 key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) (FindCond.c2 e Pre c) depth-2< findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key tree tree0 stack