Mercurial > hg > Gears > GearsAgda
changeset 512:95865cab040a
fix RedBlackTree.agda
author | mir3636 |
---|---|
date | Thu, 04 Jan 2018 15:10:24 +0900 |
parents | 044c25475ed4 |
children | f2a3acc766b5 |
files | src/parallel_execution/RedBlackTree.agda |
diffstat | 1 files changed, 33 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/RedBlackTree.agda Thu Jan 04 14:42:21 2018 +0900 +++ b/src/parallel_execution/RedBlackTree.agda Thu Jan 04 15:10:24 2018 +0900 @@ -24,30 +24,44 @@ Red : Color Black : Color -record Node (a : Set) : Set where +data CompareResult {n : Level } : Set n where + LT : CompareResult + GT : CompareResult + EQ : CompareResult + +record Node (a k : Set) : Set where field - node : Element a + key : k + value : a right : Maybe (Node a) left : Maybe (Node a) color : Color +open Node -record RedBlackTree (a si : Set) : Set where +record RedBlackTree (a k si : Set) : Set where field - root : Maybe (Node a) + root : Maybe (Node a k ) stack : Stack si + compare : k -> k -> CompareResult open RedBlackTree -insertNode : ? -insertNode tree datum next = get2 (stack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; stack = s }) datum d1 d2 next) +open Stack + +insertCase3 : ? +insertCase3 = ? -- tree datum parent grandparent next -putRedBlackTree : {Data t : Set} -> RedBlackTree Data -> Data -> (Code : RedBlackTree Data -> t) -> t -putRedBlackTree tree datum next with (root tree) -... | Nothing = insertNode tree datum next -... | Just n = findNode tree datum n (\ tree1 -> insertNode tree1 datum next) +insertCase2 : {n m : Level } {t : Set m } {a : Set n} -> RedBlackTree ? ? -> a (Node a) (Node a) ? -> t +insertCase2 tree datum parent grandparent next with (color parent) +... | Red = insertCase3 tree datum parent grandparent next +... | Black = next (record { root = ?; stack = createSingleLinkedStack }) -findNode : {Data t : Set} -> RedBlackTree Data -> Data -> Node Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t -findNode tree datum n next = pushStack (stack tree) n (\ s -> findNode1 (record tree {stack = s }) datum n next) +insertCase1 : {n m : Level } {t : Set m } {a : Set n} -> RedBlackTree ? ? -> a (Maybe (Node a) ) (Node a) ? -> t +insertCase1 tree datum Nothing grandparent next = next (record { root = ?; stack = createSingleLinkedStack }) +insertCase1 tree datum (Just parent) grandparent next = insertCase2 tree datum parent grandparent next + +insertNode : ? +insertNode tree datum next = get2Stack (stack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; stack = s }) datum d1 d2 next) findNode1 : {Data t : Set} -> RedBlackTree Data -> Data -> Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t findNode1 tree datum n next with (compare datum n) @@ -57,19 +71,18 @@ where findNode2 tree datum nothing next = insertNode tree datum next findNode2 tree datum (just n) next = findNode (record tree {root = just n}) datum n next + findNode3 : ? findNode3 nothing tree next = next tree findNode3 (just n) tree next = popStack (tree stack) (\s d -> findNode3 d (record { root = record n {right = ? } })) - -insertCase1 tree datum nothing grandparent next = next (record { root = ?; stack = createSingleLinkedStack }) -insertCase1 tree datum (just parent) grandparent next = insertCase2 tree datum parent grandparent next +findNode : {Data t : Set} -> RedBlackTree Data -> Data -> Node Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t +findNode tree datum n next = pushStack (stack tree) n (\ s -> findNode1 (record tree {stack = s }) datum n next) -insertCase2 tree datum parent grandparent next with (color parent) -... | Red = insertCase3 tree datum parent grandparent next -... | Black = next (record { root = ?; stack = createSingleLinkedStack }) - -insertCase3 tree datum parent grandparent next +putRedBlackTree : {Data t : Set} -> RedBlackTree Data -> Data -> (Code : RedBlackTree Data -> t) -> t +putRedBlackTree tree datum next with (root tree) +... | Nothing = insertNode tree datum next +... | Just n = findNode tree datum n (\ tree1 -> insertNode tree1 datum next) getRedBlackTree : {a t : Set} -> RedBlackTree a -> (Code : RedBlackTree a -> (Maybe a) -> t) -> t getRedBlackTree tree cs with (root tree)