Mercurial > hg > Gears > GearsAgda
changeset 767:9cdf272ca38c
... we need another invariant on depth of black
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 May 2023 13:36:39 +0900 |
parents | bc9063c6fef3 |
children | 1bb96bc9eb45 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 16 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Sat May 06 21:33:42 2023 +0900 +++ b/hoareBinaryTree1.agda Sun May 07 13:36:39 2023 +0900 @@ -805,12 +805,13 @@ insertCase1 with stackToPG tree orig stack si ... | case1 eq = exit rot repl rbir (subst (λ k → rotatedTree k rot) (stackCase1 si eq) roti) ri ... | case2 (case1 eq ) = ? where - insertCase12 : (to : bt (Color ∧ A)) → {d : ℕ} → RBtreeInvariant to d → to ≡ orig + insertCase12 : (to : bt (Color ∧ A)) → {d : ℕ} → RBtreeInvariant orig d → to ≡ orig + → (rr : bt (Color ∧ A)) → {dr : ℕ} → RBtreeInvariant repl dr → rr ≡ repl → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key tree to stack ) → stack ≡ tree ∷ to ∷ [] → t - insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node k2 ⟪ Black , v2 ⟫ t1 t2)) (rb-right-red x₁ ro) eq (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) leaf) (rb-left-red x₁ ro) eq (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) (rb-node-red x₁ x₂ d ro ro₁) refl (s-right x s-nil) refl = exit rot1 repl1 rrb ins13 ins12 where + insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node k2 ⟪ Black , v2 ⟫ t1 t2)) (rb-right-red x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) leaf) (rb-left-red x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) (rb-node-red x₁ x₂ d ro ro₁) refl rr rbi eqr (s-right x s-nil) refl = exit rot1 repl1 ? ins13 ins12 where rot1 : bt (Color ∧ A) rot1 = node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4) repl1 : bt (Color ∧ A) @@ -819,9 +820,6 @@ ins12 = ? ins13 : rotatedTree (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) rot1 ins13 = rr-node - rrb : RBtreeInvariant repl1 d - rrb with repl | rbir - ... | r1 | r2 = ? -- -subst (λ k → RBtreeInvariant k d ) ? (rb-node-red ? ? d ro (subst₂ (λ j k → RBtreeInvariant j k) ? ? rbir )) -- exit (node k1 ⟪ Red , v1 ⟫ t1 rot) (node k1 ⟪ Black , v1 ⟫ ? ?) (rb-node-black ? ? ? ?) @@ -830,17 +828,17 @@ -- k1 < key -- ⟪ red , k1 ⟫ -- t1 tree → rot → repl - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ d1 ro ro₁) eq (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node _ ⟪ Black , _ ⟫ _ _)) (rb-right-red x₁ ro) eq (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) leaf) (rb-left-red x₁ ro) eq (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) (node _ ⟪ Black , _ ⟫ _ _)) (rb-node-red x₁ x₂ d1 ro ro₁) eq (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ d1 ro ro₁) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq rr rbi eqr (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq rr rbi eqr (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ d1 ro ro₁) eq rr rbi eqr (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node _ ⟪ Black , _ ⟫ _ _)) (rb-right-red x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) leaf) (rb-left-red x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) (node _ ⟪ Black , _ ⟫ _ _)) (rb-node-red x₁ x₂ d1 ro ro₁) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq rr rbi eqr (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ d1 ro ro₁) eq rr rbi eqr (s-left x s-nil) refl = ? -- exit rot repl rbir ? ? ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg)