Mercurial > hg > Gears > GearsAgda
changeset 734:9d5e749531b1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 21 Apr 2023 10:36:49 +0900 |
parents | 737c5f95e5b3 |
children | 7901892bb1d8 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 36 insertions(+), 43 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Thu Apr 13 16:13:42 2023 +0900 +++ b/hoareBinaryTree1.agda Fri Apr 21 10:36:49 2023 +0900 @@ -563,24 +563,6 @@ → RBTree A key₂ c1 d → RBTree A key₁ Black (suc d) -data rbstackInvariant {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) : (key₁ : ℕ ) → Set n where - s-nil : rbstackInvariant orig key - s-right : {key₁ key₂ : ℕ} → {c1 : Color} {d1 : ℕ} → key₁ < key₂ → (top : RBTree A key₁ c1 d1) - → rbstackInvariant orig key₁ → rbstackInvariant orig key - s-left : {key₁ key₂ : ℕ} → {c1 : Color} {d1 : ℕ} → key₂ < key₁ → (top : RBTree A key₁ c1 d1) - → rbstackInvariant orig key₁ → rbstackInvariant orig key - -data rbstackInvariant2 {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) : - {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (parent : RBTree A k1 c1 d1) (grand : RBTree A k2 c2 d2) Set n where - s-head : rbstackInvariant2 orig ? orig - s-right : rbstackInvariant2 orig ? ? → rbstackInvariant2 orig ? ? - -rbsi-len : {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) {key₁ : ℕ } - → rbstackInvariant orig key₁ → ℕ -rbsi-len orig s-nil = 0 -rbsi-len orig (s-right x top ri) = suc (rbsi-len orig ri) -rbsi-len orig (s-left x top ri) = suc (rbsi-len orig ri) - RB→bt : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → bt A RB→bt {n} A (rb-leaf _) = leaf RB→bt {n} A (rb-single key value _) = node key value leaf leaf @@ -611,10 +593,27 @@ rbt-key {n} A (t-node-red key value x x₁ rb rb₁) = just key rbt-key {n} A (t-node-black key value x x₁ rb rb₁) = just key +data rbstackInvariant2 {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) : + {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (parent : RBTree A k1 c1 d1) (grand : RBTree A k2 c2 d2) → Set n where + s-head : rbstackInvariant2 orig ? orig + s-right : rbstackInvariant2 orig ? ? → rbstackInvariant2 orig ? ? + +data replacedTreeRotate {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt A ) → Set n where + r-leaf : replacedTreeRotate key value leaf (node key value leaf leaf) + r-node : {value₁ : A} → {t t₁ : bt A} → replacedTreeRotate key value (node key value₁ t t₁) (node key value t t₁) + r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} + → k < key → replacedTreeRotate key value t2 t → replacedTreeRotate key value (node k v1 t1 t2) (node k v1 t1 t) + r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} + → key < k → replacedTreeRotate key value t1 t → replacedTreeRotate key value (node k v1 t1 t2) (node k v1 t t2) + +rbsi-len : {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) {key₁ : ℕ } + → rbstackInvariant2 ? ? ? → ℕ +rbsi-len orig = ? + findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (tree1 : RBTree A key1 c1 d1 ) - → rbstackInvariant tree key1 - → (next : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant tree key1 → rbt-depth A tree0 < rbt-depth A tree1 → t ) - → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant tree key1 + → rbstackInvariant2 ? ? ? + → (next : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant2 ? ? ? → rbt-depth A tree0 < rbt-depth A tree1 → t ) + → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant2 ? ? ? → (rbt-depth A tree ≡ 0 ) ∨ ( rbt-key A tree ≡ just key ) → t ) → t findRBP {n} {m} {A} {t} key {key1} tree (rb-leaf _) si next exit = exit tree si ? findRBP {n} {m} {A} {t} key tree (rb-single _ value _) si next exit = ? @@ -634,46 +633,40 @@ insertCase5 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) - → (si : rbstackInvariant orig key1) - → (ri : replacedTree key value (RB→bt A tree) (RB→bt A repl)) + → (si : rbstackInvariant2 ? ? ?) + → (ri : replacedTreeRotate key value (RB→bt A tree) (RB→bt A repl)) → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) - → (si1 : rbstackInvariant orig k1) - → (ri : replacedTree key value (RB→bt A tree1) (RB→bt A repl1)) + → (si1 : rbstackInvariant2 ? ? ?) + → (ri : replacedTreeRotate key value (RB→bt A tree1) (RB→bt A repl1)) → rbsi-len orig si1 < rbsi-len orig si → t ) → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) - → (ri : replacedTree key value (RB→bt A orig) (RB→bt A repl1)) + → (ri : replacedTreeRotate key value (RB→bt A orig) (RB→bt A repl1)) → t ) → t insertCase5 {n} {m} {A} {t} key value orig tree repl si ri next exit = ? where - insertCase51 : (key1 : ℕ) (si : rbstackInvariant orig key1) → t + insertCase51 : (key1 : ℕ) (si : rbstackInvariant2 ? ? ? ) → t insertCase51 = ? replaceRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) - → (si : rbstackInvariant orig key1) - → (ri : replacedTree key value (RB→bt A tree) (RB→bt A repl)) + → (si : rbstackInvariant2 ? ? ? ) + → (ri : replacedTreeRotate key value (RB→bt A tree) (RB→bt A repl)) → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) - → (si1 : rbstackInvariant orig k1) - → (ri : replacedTree key value (RB→bt A tree1) (RB→bt A repl1)) + → (si1 : rbstackInvariant2 ? ? ? ) + → (ri : replacedTreeRotate key value (RB→bt A tree1) (RB→bt A repl1)) → rbsi-len orig si1 < rbsi-len orig si → t ) → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) - → (ri : replacedTree key value (RB→bt A orig) (RB→bt A repl1)) + → (ri : replacedTreeRotate key value (RB→bt A orig) (RB→bt A repl1)) → t ) → t replaceRBP {n} {m} {A} {t} key value {_} {key2} orig tree repl si ri next exit = insertCase1 key2 si where - insertCase4 : (key1 : ℕ) → (si : rbstackInvariant orig key1) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t + insertCase4 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t insertCase4 = ? - insertCase3 : (key1 : ℕ) → (si : rbstackInvariant orig key1) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t + insertCase3 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t insertCase3 key1 si parent grandparent = ? - insertCase2 : (key1 : ℕ) → (si : rbstackInvariant orig key1) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t + insertCase2 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t insertCase2 key1 si {_} {_} {_} {_} {Red} parent grand = insertCase3 key1 si parent grand insertCase2 key1 si {_} {_} {_} {_} {Black} parent grand = next ? ? ? ? ? ? ? - insertCase1 : (key1 : ℕ) (si : rbstackInvariant orig key1) → t - insertCase1 key1 s-nil = exit ? ? ? - insertCase1 key1 (s-right {key₁} {key₂} x top s-nil) = exit ? ? ? - insertCase1 key1 (s-right {key₁} {key₂} x top (s-right {key₃} {key₄} x₁ top₁ si)) = insertCase2 key₃ si ? top₁ - insertCase1 key1 (s-right {key₁} {key₂} x top (s-left {key₃} {key₄} x₁ top₁ si)) = insertCase2 key₃ si top top₁ - insertCase1 key1 (s-left {key₁} {key₂} x top s-nil) = exit ? ? ? - insertCase1 key1 (s-left {key₁} {key₂} x top (s-right {key₃} {key₄} x₁ top₁ si)) = insertCase2 key₃ si top top₁ - insertCase1 key1 (s-left {key₁} {key₂} x top (s-left {key₃} {key₄} x₁ top₁ si)) = insertCase2 key₃ si top top₁ + insertCase1 : (key1 : ℕ) (si : rbstackInvariant2 ? ? ? ) → t + insertCase1 key1 = ?