Mercurial > hg > Gears > GearsAgda
changeset 725:9e29894ae866
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Apr 2023 16:08:38 +0900 |
parents | 35891ec243a0 |
children | e545646e5f64 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 40 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Mon Apr 10 15:06:29 2023 +0900 +++ b/hoareBinaryTree1.agda Mon Apr 10 16:08:38 2023 +0900 @@ -547,18 +547,18 @@ data RBTree {n : Level} (A : Set n) : (key : ℕ) → Color → (b-depth : ℕ) → Set n where rb-leaf : (key : ℕ) → RBTree A key Black 0 rb-single : (key : ℕ) → (value : A) → (c : Color) → RBTree A key c 1 - t-right-red : {key key₁ : ℕ} → (value : A) → key < key₁ → {d : ℕ } → RBTree A key₁ Black d → RBTree A key Red d - t-right-black : {key key₁ : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ }→ RBTree A key₁ c d + t-right-red : (key : ℕ) {key₁ : ℕ} → (value : A) → key < key₁ → {d : ℕ } → RBTree A key₁ Black d → RBTree A key Red d + t-right-black : (key : ℕ) {key₁ : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ }→ RBTree A key₁ c d → RBTree A key Black (suc d) - t-left-red : {key key₁ : ℕ} → (value : A) → key < key₁ → {d : ℕ} → RBTree A key Black d + t-left-red : (key₁ : ℕ) { key : ℕ} → (value : A) → key < key₁ → {d : ℕ} → RBTree A key Black d → RBTree A key₁ Red d - t-left-black : {key key₁ : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ} → RBTree A key c d + t-left-black : (key₁ : ℕ) {key : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ} → RBTree A key c d → RBTree A key₁ Black (suc d) - t-node-red : {key key₁ key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂ → {d : ℕ} + t-node-red : (key₁ : ℕ) { key key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂ → {d : ℕ} → RBTree A key Black d → RBTree A key₂ Black d → RBTree A key₁ Red d - t-node-black : {key key₁ key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂ → {c c1 : Color} {d : ℕ} + t-node-black : (key₁ : ℕ) {key key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂ → {c c1 : Color} {d : ℕ} → RBTree A key c d → RBTree A key₂ c1 d → RBTree A key₁ Black (suc d) @@ -573,39 +573,52 @@ RB→bt : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → bt A RB→bt {n} A (rb-leaf _) = leaf RB→bt {n} A (rb-single key value _) = node key value leaf leaf -RB→bt {n} A (t-right-red {key} value x rb) = node key value leaf (RB→bt A rb) -RB→bt {n} A (t-right-black {key} value x rb) = node key value leaf (RB→bt A rb) -RB→bt {n} A (t-left-red {_} {key} value x rb) = node key value (RB→bt A rb) leaf -RB→bt {n} A (t-left-black {_} {key} value x rb) = node key value (RB→bt A rb) leaf -RB→bt {n} A (t-node-red {_} {key} value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) -RB→bt {n} A (t-node-black {_} {key} value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) +RB→bt {n} A (t-right-red key value x rb) = node key value leaf (RB→bt A rb) +RB→bt {n} A (t-right-black key value x rb) = node key value leaf (RB→bt A rb) +RB→bt {n} A (t-left-red key value x rb) = node key value (RB→bt A rb) leaf +RB→bt {n} A (t-left-black key value x rb) = node key value (RB→bt A rb) leaf +RB→bt {n} A (t-node-red key value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) +RB→bt {n} A (t-node-black key value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) rbt-depth : {n : Level} (A : Set n) {key : ℕ} {c : Color} {d : ℕ} → RBTree A key c d → ℕ rbt-depth A (rb-leaf _) = zero rbt-depth A (rb-single _ value _) = 1 -rbt-depth A (t-right-red value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-right-black value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-left-red value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-left-black value x ab) = suc ( rbt-depth A ab) -rbt-depth A (t-node-red value x x₁ ab ab₁) = suc (Data.Nat._⊔_ (rbt-depth A ab ) (rbt-depth A ab₁ )) -rbt-depth A (t-node-black value x x₁ ab ab₁) = suc (Data.Nat._⊔_ (rbt-depth A ab ) (rbt-depth A ab₁ )) +rbt-depth A (t-right-red _ value x ab) = suc ( rbt-depth A ab) +rbt-depth A (t-right-black _ value x ab) = suc ( rbt-depth A ab) +rbt-depth A (t-left-red _ value x ab) = suc ( rbt-depth A ab) +rbt-depth A (t-left-black _ value x ab) = suc ( rbt-depth A ab) +rbt-depth A (t-node-red _ value x x₁ ab ab₁) = suc (Data.Nat._⊔_ (rbt-depth A ab ) (rbt-depth A ab₁ )) +rbt-depth A (t-node-black _ value x x₁ ab ab₁) = suc (Data.Nat._⊔_ (rbt-depth A ab ) (rbt-depth A ab₁ )) -rbt-key : ? -rbt-key = ? - +rbt-key : {n : Level} (A : Set n) {key : ℕ} {c : Color} {d : ℕ} → RBTree A key c d → Maybe ℕ +rbt-key {n} A (rb-leaf _) = nothing +rbt-key {n} A (rb-single key value _) = just key +rbt-key {n} A (t-right-red key value x rb) = just key +rbt-key {n} A (t-right-black key value x rb) = just key +rbt-key {n} A (t-left-red key value x rb) = just key +rbt-key {n} A (t-left-black key value x rb) = just key +rbt-key {n} A (t-node-red key value x x₁ rb rb₁) = just key +rbt-key {n} A (t-node-black key value x x₁ rb rb₁) = just key -findRBP : {n m : Level} {A : Set n} {t : Set m} → (key key1 d d1 : ℕ) → (c : Color) → (tree : RBTree A key c d ) (tree1 : RBTree A key1 ? d1 ) +findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (tree1 : RBTree A key1 c1 d1 ) → rbstackInvariant tree key1 - → (next : (key0 d0 : ℕ) (tree1 : RBTree A key0 ? d0 ) → rbstackInvariant tree1 key0 → rbt-depth A tree1 < rbt-depth A tree → t ) - → (exit : (key0 d0 : ℕ) (tree0 : RBTree A key0 ? d0 ) → rbstackInvariant tree1 key0 - → (tree1 ≡ ? ) ∨ ( rbt-key tree1 ≡ just key ) → t ) → t + → (next : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant tree key0 → rbt-depth A tree0 < rbt-depth A tree1 → t ) + → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant tree key0 + → (rbt-depth A tree0 ≡ 0 ) ∨ ( rbt-key A tree0 ≡ just key ) → t ) → t findRBP = ? - +record ReplaceRBT {n : Level} {A : Set n} (key : ℕ) (value : A) {key0 key1 d0 d1 : ℕ} {c0 c1 : Color} + (orig : RBTree A ? ? ? ) + (tree : RBTree A key0 c0 d0) (repl : RBTree A key1 c1 d1) (si : rbstackInvariant orig key0) : Set n where + field + keyr dr : ℕ + cr : Color + treer : RBTree A keyr cr dr + ri : replacedTree key value ? ? replaceRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {key1 key2 d1 d2 : ℕ} {c1 c2 : Color} → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) - → ? + → (RR : ReplaceRBT A ? ? ? ? ? ) → (next : ℕ → A → {tree1 : RBTree A ? ? ? } (repl : RBTree A ? ? ? ) → (stack1 : rbstackInvariant tree1 key1 ) → ? → t ) → (exit : (tree1 : RBTree A ? ? ? ) → (repl : RBTree A ? ? ? ) → t ) → t replaceRBP = ?