Mercurial > hg > Gears > GearsAgda
changeset 619:a3fbc9b57015
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Nov 2021 19:43:16 +0900 |
parents | 5702800c79bc |
children | fe8c2d82c05c |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 24 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Nov 07 18:35:31 2021 +0900 +++ b/hoareBinaryTree.agda Sun Nov 07 19:43:16 2021 +0900 @@ -179,25 +179,34 @@ insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ insertTreeSpec0 _ _ _ = tt -record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) (C : Set n) : Set n where +record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where field + tree0 : bt A ti : treeInvariant tree - si : stackInvariant tree stack - opt : C - opt1 : C → C + si : stackInvariant tree0 stack findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → {Cond : bt A → List (bt A) → Set n} - → (Pre : bt A → List (bt A) → findPR tree stack (Cond tree stack) ) - → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (Cond tree1 stack1) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (Cond tree1 stack1) → t) → t + → (Pre : bt A → List (bt A) → findPR tree stack ) + → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → t) → t findPP key leaf st Pre next exit = exit leaf st (Pre leaf st ) findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (P n st) -findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = next tree (n ∷ st) (record {ti = {!!} ; si = {!!} ; opt = {!!} ; opt1 = id } ) findPP1 where -- Cond n st → Cond tree (n ∷ st) - findPP0 : {!!} - findPP0 = {!!} +findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = + next tree (n ∷ st) (record {ti = findPP0 tree tree₁ (findPR.ti (Pre n st)) ; si = findPP2 st (findPR.si (Pre n st))} ) findPP1 where + tree0 = findPR.tree0 (Pre n st) + findPP0 : (tree tree₁ : bt A) → treeInvariant ( node key₁ v tree tree₁ ) → treeInvariant tree + findPP0 leaf t x = tt + findPP0 (node key value tree tree₁) leaf x = proj1 x + findPP0 (node key value tree tree₁) (node key₁ value₁ t t₁) x = proj1 x + findPP2 : (st : List (bt A)) → stackInvariant tree0 st → stackInvariant tree0 (node key₁ v tree tree₁ ∷ st) + findPP2 [] (lift tt) = {!!} + findPP2 (leaf ∷ st) x = {!!} + findPP2 (node key value leaf leaf ∷ st) x = {!!} + findPP2 (node key value leaf (node key₁ value₁ x₂ x₃) ∷ st) x = {!!} + findPP2 (node key value (node key₁ value₁ x₁ x₃) leaf ∷ st) x = {!!} + findPP2 (node key value (node key₁ value₁ x₁ x₃) (node key₂ value₂ x₂ x₄) ∷ st) x = case1 ⟪ {!!} , {!!} ⟫ findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) findPP1 = {!!} findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) @@ -207,7 +216,7 @@ insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t insertTreePP {n} {m} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) {!!} } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) $ λ t s P → replaceNodeP key value t {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) @@ -228,9 +237,9 @@ containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ containsTree {n} {m} {A} {t} tree tree1 key value P RT = TerminatingLoopS (bt A ∧ List (bt A) ) - {λ p → findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p)) - ⟪ tree1 , [] ⟫ record { key1 = key ; value1 = value ; tree1 = tree ; ci = RT ; R = record { ti = P ; si = lift tt } } - $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) + {λ p → findPR (proj1 p) (proj2 p) ∧ findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p)) + ⟪ tree1 , [] ⟫ ⟪ {!!} , record { key1 = key ; value1 = value ; tree1 = tree ; ci = RT ; R = record { tree0 = {!!} ; ti = P ; si = lift tt } } ⟫ + $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ ⟪ P1 , {!!} ⟫ lt ) $ λ t s P → insertTreeSpec0 t value {!!} insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤