Mercurial > hg > Gears > GearsAgda
changeset 770:a4bc901bba36
RBI record
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 May 2023 12:59:13 +0900 |
parents | ce0d41a84c2b |
children | feb3553ef88c |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 24 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Sun May 07 20:19:18 2023 +0900 +++ b/hoareBinaryTree1.agda Mon May 08 12:59:13 2023 +0900 @@ -611,18 +611,22 @@ rest : List (bt A) stack=gp : stack ≡ ( self ∷ parent ∷ grand ∷ rest ) -record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) (C : bt (Color ∧ A) → bt (Color ∧ A) → List (bt (Color ∧ A)) → Set n) : Set n where +record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (orig : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) : Set n where field d rd : ℕ - tree0 rot : bt (Color ∧ A) - tree0rb : RBtreeInvariant tree0 d + tree rot repl : bt (Color ∧ A) + treerb : RBtreeInvariant tree d replrb : RBtreeInvariant repl rd d=rd : ( d ≡ rd ) ∨ ( suc d ≡ rd ) + si : stackInvariant key tree orig stack rotated : rotatedTree tree rot - si : stackInvariant key tree tree0 stack ri : replacedRBTree key value (child-replaced key rot ) repl - ci : C tree repl stack -- data continuation +rbi-case1 : {n : Level} {A : Set n} → {key : ℕ} → {value : A} → (tree orig : bt (Color ∧ A) ) + → (stack : List (bt (Color ∧ A))) + → stack ≡ tree ∷ orig ∷ [] → RBI key value orig stack → RBI key value orig (orig ∷ []) +rbi-case1 {n} {A} {key} {value} tree orig stack eq rbi = ? + stackToPG : {n : Level} {A : Set n} → {key : ℕ } → (tree orig : bt A ) → (stack : List (bt A)) → stackInvariant key tree orig stack → ( stack ≡ orig ∷ [] ) ∨ ( stack ≡ tree ∷ orig ∷ [] ) ∨ PG A tree stack @@ -763,6 +767,20 @@ replaceRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) + → (orig : bt (Color ∧ A)) + → (stack : List (bt (Color ∧ A))) + → (r : RBI key value orig stack ) + → (next : (stack1 : List (bt (Color ∧ A))) + → (r : RBI key value orig stack1 ) + → length stack1 < length stack → t ) + → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) + → stack1 ≡ (orig ∷ []) + → RBI key value orig stack1 + → t ) → t +replaceRBP = ? + +replaceRBP' : {n m : Level} {A : Set n} {t : Set m} + → (key : ℕ) → (value : A) → (to tr rot rr : bt (Color ∧ A)) → {d0 : ℕ} → RBtreeInvariant to d0 → {d : ℕ} → RBtreeInvariant tr d → {dr : ℕ} → RBtreeInvariant rr dr @@ -780,7 +798,7 @@ → (exit : (rot repl : bt (Color ∧ A) ) → {d : ℕ} → RBtreeInvariant repl d → (ri : rotatedTree to rot ) → replacedRBTree key value (child-replaced key rot) repl → t ) → t -replaceRBP {n} {m} {A} {t} key value orig tree rot repl rbio rbit rbir stack si roti ri next exit = ? where +replaceRBP' {n} {m} {A} {t} key value orig tree rot repl rbio rbit rbir stack si roti ri next exit = ? where insertCase2 : (tree parent uncle grand : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) → (pg : ParentGrand tree parent uncle grand ) → t