Mercurial > hg > Gears > GearsAgda
changeset 662:a8959c8340e0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Nov 2021 21:52:03 +0900 |
parents | 323533798054 |
children | cf5095488bbd |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 66 insertions(+), 37 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Nov 21 19:31:44 2021 +0900 +++ b/hoareBinaryTree.agda Sun Nov 21 21:52:03 2021 +0900 @@ -65,12 +65,7 @@ replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t replace key value tree [] next exit = exit tree -replace key value tree (leaf ∷ []) next exit = exit (node key value leaf leaf) -replace key value tree (leaf ∷ leaf ∷ st) next exit = exit (node key value leaf leaf) -replace key value tree (leaf ∷ node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = next key value (node key₁ value₁ (node key value leaf leaf) right ) st -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st -... | tri> ¬a ¬b c = next key value (node key₁ value₁ left (node key value leaf leaf) ) st +replace key value tree (leaf ∷ _) next exit = exit (node key value leaf leaf) replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st @@ -83,7 +78,7 @@ replace-loop1 key value tree st = replace key value tree st replace-loop1 exit insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t -insertTree tree key value exit = find-loop key tree [] $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit +insertTree tree key value exit = find-loop key tree ( tree ∷ [] ) $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit insertTest1 = insertTree leaf 1 1 (λ x → x ) insertTest2 = insertTree insertTest1 2 1 (λ x → x ) @@ -102,13 +97,15 @@ → treeInvariant (node key₂ value₂ t₃ t₄) → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) -data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (orig : bt A) → (stack : List (bt A)) → Set n where - s-nil : {tree0 : bt A} → stackInvariant key tree0 [] - s-single : {tree0 : bt A} → stackInvariant key tree0 (tree0 ∷ []) +-- +-- stack always contains original top at end +-- +data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where + s-single : {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ []) s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} - → key₁ < key → stackInvariant key tree0 (node key₁ v1 tree₁ tree ∷ st) → stackInvariant key tree0 (tree ∷ node key₁ v1 tree₁ tree ∷ st) + → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st) s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} - → key < key₁ → stackInvariant key tree0 (node key₁ v1 tree₁ tree ∷ st) → stackInvariant key tree0 (tree₁ ∷ node key₁ v1 tree₁ tree ∷ st) + → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st) data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where r-leaf : replacedTree key value leaf (node key value leaf leaf) @@ -118,8 +115,7 @@ r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t1 t) (node k v1 t2 t) -replFromStack : {n : Level} {A : Set n} {key : ℕ} {orig : bt A} → {stack : List (bt A)} → stackInvariant key orig stack → bt A -replFromStack (s-nil {tree} ) = tree +replFromStack : {n : Level} {A : Set n} {key : ℕ} {top orig : bt A} → {stack : List (bt A)} → stackInvariant key top orig stack → bt A replFromStack (s-single {tree} ) = tree replFromStack (s-right {tree} x st) = tree replFromStack (s-left {tree} x st) = tree @@ -146,8 +142,24 @@ stack-last (x ∷ []) = just x stack-last (x ∷ s) = stack-last s -stackInvariantTest1 : stackInvariant 4 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) -stackInvariantTest1 = s-right (add< 2) s-single +stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) +stackInvariantTest1 = s-right (add< 2) s-single + +si-property1 : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack + → stack-top stack ≡ just tree +si-property1 key t t0 [] ne (s-nil ) = ⊥-elim ( ne refl ) +si-property1 key t t0 (t ∷ []) ne s-single = refl +si-property1 key t t0 (t ∷ st) _ (s-right _ si) = refl +si-property1 key t t0 (t ∷ st) _ (s-left _ si) = refl + +si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack + → stack-last stack ≡ just tree0 +si-property-last key t t0 [] ne s-nil = ⊥-elim ( ne refl ) +si-property-last key t t0 (t ∷ []) _ s-single = refl +si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si ) with si-property1 key _ _ (x ∷ st) (λ ()) si +... | refl = si-property-last key x t0 (x ∷ st) (λ ()) si +si-property-last key t t0 (.t ∷ x ∷ st) ne (s-left _ si ) with si-property1 key _ _ (x ∷ st) (λ ()) si +... | refl = si-property-last key x t0 (x ∷ st) (λ ()) si ti-right : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 tree₁ repl) → treeInvariant repl ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf @@ -161,6 +173,16 @@ ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti +stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A)) + → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub +stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti s-single = ti +stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ) = ti-right (si1 si) where + si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub ) + si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si +stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si ) = ti-left ( si2 si) where + si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant (node key₁ v1 sub tree₁ ) + si2 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 sub tree₁ ) tree st ti si + rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node () @@ -198,19 +220,21 @@ open _∧_ findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) - → treeInvariant tree ∧ stackInvariant key tree0 stack - → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree0 stack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree0 stack + → treeInvariant tree ∧ stackInvariant key tree tree0 stack + → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl) findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) -findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) - ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where - findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key tree0 st → stackInvariant key tree0 (tree ∷ st) - findP1 a [] si = ? - findP1 a (x ∷ st) si = ? -findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , {!!} ⟫ depth-2< +findP {n} {_} {A} key nd@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) + ⟪ treeLeftDown tree tree₁ (proj1 Pre) , {!!} ⟫ depth-1< where + findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (nd ∷ st) + findP1 a (x ∷ st) si = {!!} -- s-left a ? ? stackInvariant key (node key₁ v1 tree tree₁) tree0 (x ∷ st) + -- → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ x ∷ st) + findP1 a [] si = {!!} -- stackInvariant key (node key₁ v1 tree tree₁) tree0 [] + -- → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ []) +findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) replaceTree1 k v1 value (t-single .k .v1) = t-single k value @@ -237,28 +261,33 @@ replaceP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {tree0 tree tree-st : bt A} ( repl : bt A) - → (stack : List (bt A)) → treeInvariant tree0 ∧ stackInvariant key tree0 stack ∧ replacedTree key value tree repl + → (stack : List (bt A)) → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack ∧ replacedTree key value tree repl → (next : ℕ → A → {tree0 tree1 tree-st : bt A } (repl : bt A) → (stack1 : List (bt A)) - → treeInvariant tree0 ∧ stackInvariant key tree0 stack1 ∧ replacedTree key value tree1 repl → length stack1 < length stack → t) + → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack1 ∧ replacedTree key value tree1 repl → length stack1 < length stack → t) → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t replaceP key value {tree0} {tree} {tree-st} repl [] Pre next exit with proj1 (proj2 Pre) ... | t = {!!} replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ []) Pre next exit with proj1 (proj2 Pre) ... | s-single = {!!} +... | s-right x t = {!!} +... | s-left x t = {!!} replaceP key value {tree0} {tree} {tree-st} repl (leaf ∷ leaf ∷ st) Pre next exit with proj1 (proj2 Pre) -... | () +... | s-right x t = {!!} +... | s-left x t = {!!} replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) (node key₁ value₁ tree right ∷ st) ⟪ proj1 Pre , ⟪ repl5 (proj1 (proj2 Pre)) , r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl where - repl5 : stackInvariant key tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key tree0 (node key₁ value₁ tree right ∷ st ) - repl5 si = {!!} + repl5 : stackInvariant key tree-st tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ tree right) tree0 (node key₁ value₁ tree right ∷ st ) + repl5 si with si-property1 _ _ _ _ {!!} si + repl5 (s-right x si ) | refl = s-left a {!!} + repl5 (s-left x si ) | refl = s-left a {!!} ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} depth-3< ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right) st {!!} depth-3< replaceP key value {tree0} {tree} {tree-st} repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right ) st {!!} ≤-refl ... | tri≈ ¬a b ¬c = next key value (node key value left right ) st {!!} ≤-refl where -- this case won't happen ... | tri< a ¬b ¬c with proj1 (proj2 Pre) -... | s-single = {!!} +... | s-single = {!!} ... | s-right x si1 = {!!} ... | s-left x si1 = next key value (node key₁ value₁ repl right ) st ⟪ proj1 Pre , ⟪ si1 , r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl -- = next key value (node key₁ value₁ repl right ) st ⟪ proj1 Pre , ⟪ repl2 (proj1 (proj2 Pre)) , r-left a {!!} ⟫ ⟫ ≤-refl where @@ -296,11 +325,11 @@ insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t insertTreeP {n} {m} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) $ λ t _ s P C → replaceNodeP key value t C (proj1 P) $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) - {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } + {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫ $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!} (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit @@ -316,7 +345,7 @@ field tree0 : bt A ti : treeInvariant tree0 - si : stackInvariant key tree0 stack + si : stackInvariant key tree tree0 stack ci : C tree stack -- data continuation findPP : {n m : Level} {A : Set n} {t : Set m} @@ -330,7 +359,7 @@ findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where tree0 = findPR.tree0 Pre - findPP2 : (st : List (bt A)) → stackInvariant key tree0 st → stackInvariant key tree0 (node key₁ v1 tree tree₁ ∷ st) + findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st → stackInvariant key {!!} tree0 (node key₁ v1 tree tree₁ ∷ st) findPP2 = {!!} findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) findPP1 = depth-1< @@ -345,7 +374,7 @@ $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) $ λ t s _ P → replaceNodeP key value t {!!} {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) - {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } + {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!} (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit @@ -377,6 +406,6 @@ lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci (findPR.ci P2)) (findPR.si P2) found? where lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) → - replacedTree key value t1 tree1 → stackInvariant key tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value + replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value lemma7 = {!!}