Mercurial > hg > Gears > GearsAgda
changeset 772:a8af918e7fd9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 May 2023 18:49:57 +0900 |
parents | feb3553ef88c |
children | d6d442196c87 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 41 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Mon May 08 13:32:42 2023 +0900 +++ b/hoareBinaryTree1.agda Mon May 08 18:49:57 2023 +0900 @@ -212,6 +212,14 @@ ri : replacedTree key value (child-replaced key tree ) repl ci : C tree repl stack -- data continuation +record replacePR' {n : Level} {A : Set n} (key : ℕ) (value : A) (orig : bt A ) (stack : List (bt A)) : Set n where + field + tree repl : bt A + ti : treeInvariant orig + si : stackInvariant key tree orig stack + ri : replacedTree key value (child-replaced key tree) repl + -- treeInvariant of tree and repl is inferred from ti, si and ri. + replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key ) → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value (child-replaced key tree) tree1 → t) → t @@ -547,6 +555,18 @@ → RBtreeInvariant (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄) d → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ (node key ⟪ c , value ⟫ t₁ t₂) (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄)) (suc d) +-- RBttreeInvariant tree bd → treeInvariant is easy + +RBti→ti : {n : Level} {A : Set n} (tree : bt (Color ∧ A)) {bd : ℕ} → RBtreeInvariant tree bd → treeInvariant tree +RBti→ti {n} {A} .leaf rb-leaf = t-leaf +RBti→ti {n} {A} .(node key ⟪ Black , value ⟫ leaf leaf) (rb-single key value) = t-single ? ? +RBti→ti {n} {A} .(node _ ⟪ Red , _ ⟫ leaf (node _ ⟪ Black , _ ⟫ _ _)) (rb-right-red x bd) = ? +RBti→ti {n} {A} .(node _ ⟪ Black , _ ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x bd) = ? +RBti→ti {n} {A} .(node _ ⟪ Red , _ ⟫ (node _ ⟪ Black , _ ⟫ _ _) leaf) (rb-left-red x bd) = ? +RBti→ti {n} {A} .(node _ ⟪ Black , _ ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x bd) = ? +RBti→ti {n} {A} .(node _ ⟪ Red , _ ⟫ (node _ ⟪ Black , _ ⟫ _ _) (node _ ⟪ Black , _ ⟫ _ _)) (rb-node-red x x₁ _ bd bd₁) = ? +RBti→ti {n} {A} .(node _ ⟪ Black , _ ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x x₁ d bd bd₁) = ? + tesr-rb-0 : RBtreeInvariant {_} {ℕ} leaf 0 tesr-rb-0 = rb-leaf @@ -613,20 +633,31 @@ record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (orig : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) : Set n where field - od d rd : ℕ - tree rot repl : bt (Color ∧ A) - origrb : RBtreeInvariant orig od - treerb : RBtreeInvariant tree d - replrb : RBtreeInvariant repl rd - d=rd : ( d ≡ rd ) ∨ ( suc d ≡ rd ) - si : stackInvariant key tree orig stack - rotated : rotatedTree tree rot - ri : replacedRBTree key value (child-replaced key rot ) repl + od d rd : ℕ + tree rot repl : bt (Color ∧ A) + origrb : RBtreeInvariant orig od + treerb : RBtreeInvariant tree d + replrb : RBtreeInvariant repl rd + d=rd : ( d ≡ rd ) ∨ ( suc d ≡ rd ) + si : stackInvariant key tree orig stack + rotated : rotatedTree tree rot + ri : replacedRBTree key value (child-replaced key rot ) repl rbi-case1 : {n : Level} {A : Set n} → {key : ℕ} → {value : A} → (tree orig : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → stack ≡ tree ∷ orig ∷ [] → RBI key value orig stack → RBI key value orig (orig ∷ []) -rbi-case1 {n} {A} {key} {value} tree₁ .(node _ _ t1 tree₁) (tree₁ ∷ .(node _ _ t1 tree₁) ∷ []) refl record { od = od ; d = d ; rd = rd ; tree = .tree₁ ; rot = rot ; repl = repl ; origrb = origrb ; treerb = treerb ; replrb = replrb ; d=rd = d=rd ; si = (s-right .tree₁ .(node _ _ t1 tree₁) t1 x s-nil) ; rotated = rotated ; ri = ri } = ? +rbi-case1 {n} {A} {key} {value} tree₁ .(node k1 ⟪ Red , v1 ⟫ t1 tree₁) (tree₁ ∷ node k1 ⟪ Red , v1 ⟫ t1 tree₁ ∷ []) refl record { od = od ; d = d ; rd = rd ; tree = .tree₁ ; rot = rot ; repl = repl ; origrb = origrb ; treerb = treerb ; replrb = replrb ; d=rd = d=rd ; si = (s-right .tree₁ .(node _ ⟪ Red , v1 ⟫ t1 tree₁) t1 x s-nil) ; rotated = rotated ; ri = ri } = record { + od = od ; d = ? ; rd = ? + ; tree = node _ ⟪ Red , v1 ⟫ t1 tree₁ ; rot = ? ; repl = node k1 ⟪ Red , v1 ⟫ t1 repl + ; origrb = origrb + ; treerb = ? + ; replrb = ? + ; d=rd = ? + ; si = s-nil + ; rotated = ? + ; ri = ? + } +rbi-case1 {n} {A} {key} {value} tree₁ .(node _ ⟪ Black , proj4 ⟫ t1 tree₁) (tree₁ ∷ node _ ⟪ Black , proj4 ⟫ t1 tree₁ ∷ []) refl record { od = od ; d = d ; rd = rd ; tree = .tree₁ ; rot = rot ; repl = repl ; origrb = origrb ; treerb = treerb ; replrb = replrb ; d=rd = d=rd ; si = (s-right .tree₁ .(node _ ⟪ Black , proj4 ⟫ t1 tree₁) t1 x s-nil) ; rotated = rotated ; ri = ri } = ? rbi-case1 {n} {A} {key} {value} tree₁ orig (tree₁ ∷ orig ∷ []) refl record { od = od ; d = d ; rd = rd ; tree = .tree₁ ; rot = rot ; repl = repl ; origrb = origrb ; treerb = treerb ; replrb = replrb ; d=rd = d=rd ; si = (s-left _ _ _ x si) ; rotated = rotated ; ri = ri } = ? stackToPG : {n : Level} {A : Set n} → {key : ℕ } → (tree orig : bt A )