Mercurial > hg > Gears > GearsAgda
changeset 690:a971a954a345
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 Dec 2021 11:24:42 +0900 |
parents | 25f89e4bc160 |
children | ca624203b453 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 114 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Wed Dec 01 09:18:42 2021 +0900 +++ b/hoareBinaryTree.agda Wed Dec 01 11:24:42 2021 +0900 @@ -65,12 +65,12 @@ replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t replace key value repl [] next exit = exit repl -- can't happen -replace key value repl (leaf ∷ []) next exit = exit repl -- can't happen +replace key value repl (leaf ∷ []) next exit = exit repl replace key value repl (node key₁ value₁ left right ∷ []) next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = exit (node key₁ value₁ repl right ) ... | tri≈ ¬a b ¬c = exit (node key₁ value left right ) ... | tri> ¬a ¬b c = exit (node key₁ value₁ left repl ) -replace key value repl (leaf ∷ st) next exit = next key value repl st -- can't happen +replace key value repl (leaf ∷ st) next exit = next key value repl st replace key value repl (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st @@ -158,13 +158,6 @@ si-property1 (s-right _ si) = refl si-property1 (s-left _ si) = refl -si-property2 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 (leaf ∷ stack ) → stack ≡ [] -si-property2 s-single = refl -si-property2 (s-right x s-single) = {!!} -si-property2 (s-right x (s-right x₁ si)) = {!!} -si-property2 (s-right x (s-left x₁ si)) = {!!} -si-property2 (s-left x si) = {!!} - si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack → stack-last stack ≡ just tree0 si-property-last key t t0 (t ∷ []) (s-single ) = refl @@ -201,6 +194,9 @@ rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ () rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ () +rt-property-leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {repl : bt A} → replacedTree key value leaf repl → repl ≡ node key value leaf leaf +rt-property-leaf r-leaf = refl + depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) depth-1< {i} {j} = s≤s (m≤m⊔n _ j) @@ -324,7 +320,35 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬c c) ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬c c) ... | tri> ¬a ¬b c = refl -replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(x ∷ xs)) Pre next exit = {!!} -- can't happen +replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(tree1 ∷ st1)) Pre next exit = next key value repl st Post ≤-refl where + Post : replacePR key value tree1 repl (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤) + Post with replacePR.si Pre + ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where + repl09 : tree1 ≡ node key₂ v1 tree₁ leaf + repl09 = si-property1 si + repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) + repl10 with si-property1 si + ... | refl = si + repl07 : child-replaced key (node key₂ v1 tree₁ leaf) ≡ leaf + repl07 with <-cmp key key₂ + ... | tri< a ¬b ¬c = ⊥-elim (¬c x) + ... | tri≈ ¬a b ¬c = ⊥-elim (¬c x) + ... | tri> ¬a ¬b c = refl + repl12 : replacedTree key value (child-replaced key tree1 ) repl + repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf + ... | s-left {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where + repl09 : tree1 ≡ node key₂ v1 leaf tree₁ + repl09 = si-property1 si + repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) + repl10 with si-property1 si + ... | refl = si + repl07 : child-replaced key (node key₂ v1 leaf tree₁ ) ≡ leaf + repl07 with <-cmp key key₂ + ... | tri< a ¬b ¬c = refl + ... | tri≈ ¬a b ¬c = ⊥-elim (¬a x) + ... | tri> ¬a ¬b c = ⊥-elim (¬a x) + repl12 : replacedTree key value (child-replaced key tree1 ) repl + repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf replaceP {n} {_} {A} key value {tree} repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤) @@ -377,8 +401,86 @@ child-replaced key tree1 ∎ where open ≡-Reasoning repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ repl right) repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04 (r-left a (replacePR.ri Pre)) -... | tri≈ ¬a b ¬c = next key value {{!!}} (node key₁ value left right ) st {!!} ≤-refl -- can't happen -... | tri> ¬a ¬b c = next key value {{!!}} (node key₁ value₁ left tree ) st {!!} ≤-refl +... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st Post ≤-refl where -- can't happen + Post : replacePR key value tree1 (node key₁ value left right ) (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤) + Post with replacePR.si Pre + ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where + repl09 : tree1 ≡ node key₂ v1 tree₁ tree -- (node key₁ value₁ left right) + repl09 = si-property1 si + repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) + repl10 with si-property1 si + ... | refl = si + repl07 : child-replaced key (node key₂ v1 tree₁ tree) ≡ tree + repl07 with <-cmp key key₂ + ... | tri< a ¬b ¬c = ⊥-elim (¬c x) + ... | tri≈ ¬a b ¬c = ⊥-elim (¬c x) + ... | tri> ¬a ¬b c = refl + repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value left right ) + repl12 = {!!} + ... | s-left {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where + repl09 : tree1 ≡ node key₂ v1 tree tree₁ + repl09 = si-property1 si + repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) + repl10 with si-property1 si + ... | refl = si + repl07 : child-replaced key (node key₂ v1 tree tree₁ ) ≡ tree + repl07 with <-cmp key key₂ + ... | tri< a ¬b ¬c = refl + ... | tri≈ ¬a b ¬c = ⊥-elim (¬a x) + ... | tri> ¬a ¬b c = ⊥-elim (¬a x) + repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value left right ) + repl12 = {!!} +... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st Post ≤-refl where + Post : replacePR key value tree1 (node key₁ value₁ left repl ) st (λ _ _ _ → Lift n ⊤) + Post with replacePR.si Pre + ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where + repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) + repl09 = si-property1 si + repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) + repl10 with si-property1 si + ... | refl = si + repl03 : child-replaced key (node key₁ value₁ left right) ≡ right + repl03 with <-cmp key key₁ + ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c) + ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c) + ... | tri> ¬a ¬b c = refl + repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right + repl02 with repl09 | <-cmp key key₂ + ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt) + ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt) + ... | refl | tri> ¬a ¬b c = refl + repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1 + repl04 = begin + node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩ + node key₁ value₁ left right ≡⟨ sym repl02 ⟩ + child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩ + child-replaced key tree1 ∎ where open ≡-Reasoning + repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ left repl) + repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre)) + ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where + repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁ + repl09 = si-property1 si + repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) + repl10 with si-property1 si + ... | refl = si + repl03 : child-replaced key (node key₁ value₁ left right) ≡ right + repl03 with <-cmp key key₁ + ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c) + ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c) + ... | tri> ¬a ¬b c = refl + repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right + repl02 with repl09 | <-cmp key key₂ + ... | refl | tri< a ¬b ¬c = refl + ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt) + ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt) + repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1 + repl04 = begin + node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩ + node key₁ value₁ left right ≡⟨ sym repl02 ⟩ + child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩ + child-replaced key tree1 ∎ where open ≡-Reasoning + repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ left repl) + repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre)) TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ) → (r : Index) → (p : Invraiant r)