Mercurial > hg > Gears > GearsAgda
changeset 704:aad148b5037d
..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Dec 2021 18:57:23 +0900 |
parents | 23e0b9df7896 |
children | fa0feb3c7adf |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 19 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Dec 05 14:50:04 2021 +0900 +++ b/hoareBinaryTree.agda Sun Dec 05 18:57:23 2021 +0900 @@ -241,6 +241,24 @@ treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ + +record findCond {n : Level} {A : Set n} {C : ℕ → bt A → Set n} ( key : ℕ ) (tree : bt A) : Set (suc n) where + field + c1 : {key₁ : ℕ} } {v1 : A } { tree₀ tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁ → C key tree + c2 : {key₁ : ℕ} } {v1 : A } { tree₀ tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁ → C key tree + + +findP0 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) + → {C : ℕ → bt A → Set n} → C key tree + → (next : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 + → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t +findP0 key leaf st Pre _ exit = exit leaf st Pre (case1 refl) +findP0 key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ +findP0 key n st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) +findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st) {!!} depth-1< +findP0 key n@(node key₁ v1 tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) {!!} depth-2< + findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key tree tree0 stack → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) @@ -253,6 +271,7 @@ ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) findP1 a (x ∷ st) si = s-left a si + findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)