changeset 659:afcccfaea264

stack invariant in findP
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 21 Nov 2021 17:24:40 +0900
parents be2fd2884eef
children 712e2998c76b
files hoareBinaryTree.agda
diffstat 1 files changed, 10 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
--- a/hoareBinaryTree.agda	Sun Nov 21 15:53:27 2021 +0900
+++ b/hoareBinaryTree.agda	Sun Nov 21 17:24:40 2021 +0900
@@ -104,7 +104,7 @@
 
 data stackInvariant {n : Level} {A : Set n}  (key : ℕ) : (top orig : bt A) → (stack  : List (bt A)) → Set n where
     s-nil :  {tree : bt A} → stackInvariant key tree tree []
-    s-single :  {tree : bt A} →  stackInvariant key tree tree [] →  stackInvariant key tree tree (tree ∷ [])
+    s-single :  {tree tree0 : bt A} →  stackInvariant key tree tree0 [] →  stackInvariant key tree tree0 (tree ∷ [])
     s-right :  {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
         → key₁ < key  →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) →  stackInvariant key tree tree0 (tree ∷ st)
     s-left :  {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
@@ -162,7 +162,7 @@
 si-property-last :  {n : Level} {A : Set n}  (key : ℕ) (tree tree0 : bt A) → (stack  : List (bt A)) → ¬ (stack ≡ [])   → stackInvariant key tree tree0 stack
    → stack-last stack ≡ just tree0
 si-property-last key t t0 [] ne s-nil  = ⊥-elim ( ne refl )
-si-property-last key t t0 (t ∷ [])  _ (s-single _)  = {!!}
+si-property-last key t t0 (t ∷ [])  _ (s-single s-nil)  = refl
 si-property-last key t t0 (t ∷ [])  _ (s-right _ _ ne)  = ⊥-elim ( ne refl )
 si-property-last key t t0 (t ∷ [])  _ (s-left _ _ ne)  = ⊥-elim ( ne refl )
 si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si _) with  si-property1 key _ _ (x ∷ st) (λ ()) si
@@ -185,7 +185,7 @@
 stackTreeInvariant : {n  : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A))
    →  treeInvariant tree → stackInvariant key sub tree stack  → treeInvariant sub
 stackTreeInvariant {_} {A} key sub tree [] ti s-nil = ti
-stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single _ ) = {!!}
+stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single s-nil ) = ti
 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si _) = ti-right (si1 si) where
    si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} →  stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant  (node key₁ v1 tree₁ sub )
    si1 {tree₁ }  {key₁ }  {v1 }  si = stackTreeInvariant  key (node key₁ v1 tree₁ sub ) tree st ti si
@@ -237,11 +237,14 @@
 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl)
 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁
 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl)
-findP {_} {_} {A} key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st)
-       ⟪ treeLeftDown tree tree₁ (proj1 Pre)  , findP1 a st (proj2 Pre) ⟫ depth-1< where
-   findP1 : key < key₁ → (st : List (bt A)) →  stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
+findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st)
+       ⟪ treeLeftDown tree tree₁ (proj1 Pre)  , ? ⟫ depth-1< where
+   findP0 : key < key₁ → (st : List (bt A)) →  stackInvariant key (node key₁ v1 tree tree₁) tree0 st → Set n
+   findP0 a [] si = stackInvariant key tree0 tree0 (tree0 ∷ [])
+   findP0 a (x ∷ st) si = stackInvariant key tree tree0 (tree ∷ x ∷ st)
+   findP1 : (a : key < key₁ ) → (st : List (bt A)) →  (si : stackInvariant key (node key₁ v1 tree tree₁) tree0 st) → findP0 a st si
    findP1 a (x ∷ st) si = s-left a si (λ ())
-   findP1 a [] s-nil = {!!} --s-single s-nil
+   findP1 a [] s-nil = s-single  s-nil
 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) {!!} ⟫ depth-2<
 
 replaceTree1 : {n  : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) →  treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)