Mercurial > hg > Gears > GearsAgda
changeset 297:b46398081fe4
add working example
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Feb 2017 10:55:36 +0900 |
parents | f16802b3b580 |
children | 898fce27f334 |
files | src/test/CMakeLists.txt src/test/vectorAddDrv.cc src/test/vectorAdd_kernel.cu |
diffstat | 3 files changed, 582 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/test/CMakeLists.txt Fri Feb 10 10:44:48 2017 +0900 +++ b/src/test/CMakeLists.txt Sat Feb 11 10:55:36 2017 +0900 @@ -4,6 +4,8 @@ set(NVCCFLAG "-std=c++11" "-g" "-O0" ) +include_directories("/usr/local/cuda/include") + # set(CMAKE_C_COMPILER $ENV{CBC_COMPILER}) set(CUDA_LINK_FLAGS "-framework CUDA -lc++ -Wl,-search_paths_first -Wl,-headerpad_max_install_names /Developer/NVIDIA/CUDA-8.0/lib/libcudart_static.a -Wl,-rpath,/usr/local/cuda/lib") @@ -33,6 +35,13 @@ add_executable(twiceExample twice.o multiply.ptx test.c) +add_custom_command(OUTPUT vectorAdd_kernel.ptx + DEPENDS vectorAdd_kernel.cu + COMMAND nvcc ${NVCCFLAG} -c vectorAdd_kernel.cu -ptx +) + +add_executable(vectorExample vectorAddDrv.cc vectorAdd_kernel.ptx) + # to compile these, comment out CMAKE_C_COMPILER # cuda_add_executable(Cudasample_gpu Cudasample_gpu.cu) # cuda_add_executable(Cudasample_cpu Cudasample_cpu.cu)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/test/vectorAddDrv.cc Sat Feb 11 10:55:36 2017 +0900 @@ -0,0 +1,546 @@ +/* + * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. + * + * Please refer to the NVIDIA end user license agreement (EULA) associated + * with this source code for terms and conditions that govern your use of + * this software. Any use, reproduction, disclosure, or distribution of + * this software and related documentation outside the terms of the EULA + * is strictly prohibited. + * + */ + +/* Vector addition: C = A + B. + * + * This sample is a very basic sample that implements element by element + * vector addition. It is the same as the sample illustrating Chapter 3 + * of the programming guide with some additions like error checking. + * + */ + +// Includes +#include <stdio.h> +#include <string.h> +#include <iostream> +#include <cstring> +#include <math.h> + +// includes, project +#include <driver_types.h> +#include <cuda_runtime.h> +#include <cuda.h> +#include "helper_cuda.h" + +// includes, CUDA +#include <builtin_types.h> + +#define PTX_FILE "vectorAdd_kernel.ptx" + + +using namespace std; + +// Variables +CUdevice cuDevice; +CUcontext cuContext; +CUmodule cuModule; +CUfunction vecAdd_kernel; +float *h_A; +float *h_B; +float *h_C; +CUdeviceptr d_A; +CUdeviceptr d_B; +CUdeviceptr d_C; +bool noprompt = false; + +// Functions +void Cleanup(bool); +CUresult CleanupNoFailure(); +void RandomInit(float *, int); +bool findModulePath(const char *, string &, char **, string &); +void ParseArguments(int, char **); + +int *pArgc = NULL; +char **pArgv = NULL; + + +// Host code +int main(int argc, char **argv) +{ + pArgc = &argc; + pArgv = argv; + + printf("Vector Addition (Driver API)\n"); + int N = 50000, devID = 0; + size_t size = N * sizeof(float); + + CUresult error; + ParseArguments(argc, argv); + + // Initialize + checkCudaErrors(cuInit(0)); + + // This assumes that the user is attempting to specify a explicit device -device=n + if (argc > 1) + { + bool bFound = false; + + for (int param=0; param < argc; param++) + { + int string_start = 0; + + while (argv[param][string_start] == '-') + { + string_start++; + } + + char *string_argv = &argv[param][string_start]; + + if (!strncmp(string_argv, "device", 6)) + { + int len=(int)strlen(string_argv); + + while (string_argv[len] != '=') + { + len--; + } + + devID = atoi(&string_argv[++len]); + bFound = true; + } + + if (bFound) + { + break; + } + } + } + + // Get number of devices supporting CUDA + int deviceCount = 0; + error = cuDeviceGetCount(&deviceCount); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + if (deviceCount == 0) + { + printf("There is no device supporting CUDA.\n"); + Cleanup(false); + } + + if (devID < 0) + { + devID = 0; + } + + if (devID > deviceCount-1) + { + fprintf(stderr, "(Device=%d) invalid GPU device. %d GPU device(s) detected.\nexiting...\n", devID, deviceCount); + CleanupNoFailure(); + exit(EXIT_SUCCESS); + } + else + { + int major, minor; + char deviceName[100]; + checkCudaErrors(cuDeviceComputeCapability(&major, &minor, devID)); + checkCudaErrors(cuDeviceGetName(deviceName, 256, devID)); + printf("> Using Device %d: \"%s\" with Compute %d.%d capability\n", devID, deviceName, major, minor); + } + + // pick up device with zero ordinal (default, or devID) + error = cuDeviceGet(&cuDevice, devID); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + // Create context + error = cuCtxCreate(&cuContext, 0, cuDevice); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + // first search for the module path before we load the results + string module_path, ptx_source; + + if (!findModulePath(PTX_FILE, module_path, argv, ptx_source)) + { + if (!findModulePath("vectorAdd_kernel.cubin", module_path, argv, ptx_source)) + { + printf("> findModulePath could not find <vectorAdd> ptx or cubin\n"); + Cleanup(false); + } + } + else + { + printf("> initCUDA loading module: <%s>\n", module_path.c_str()); + } + + // Create module from binary file (PTX or CUBIN) + if (module_path.rfind("ptx") != string::npos) + { + // in this branch we use compilation with parameters + const unsigned int jitNumOptions = 3; + CUjit_option *jitOptions = new CUjit_option[jitNumOptions]; + void **jitOptVals = new void *[jitNumOptions]; + + // set up size of compilation log buffer + jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES; + int jitLogBufferSize = 1024; + jitOptVals[0] = (void *)(size_t)jitLogBufferSize; + + // set up pointer to the compilation log buffer + jitOptions[1] = CU_JIT_INFO_LOG_BUFFER; + char *jitLogBuffer = new char[jitLogBufferSize]; + jitOptVals[1] = jitLogBuffer; + + // set up pointer to set the Maximum # of registers for a particular kernel + jitOptions[2] = CU_JIT_MAX_REGISTERS; + int jitRegCount = 32; + jitOptVals[2] = (void *)(size_t)jitRegCount; + + error = cuModuleLoadDataEx(&cuModule, ptx_source.c_str(), jitNumOptions, jitOptions, (void **)jitOptVals); + + printf("> PTX JIT log:\n%s\n", jitLogBuffer); + } + else + { + error = cuModuleLoad(&cuModule, module_path.c_str()); + } + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + // Get function handle from module + error = cuModuleGetFunction(&vecAdd_kernel, cuModule, "VecAdd_kernel"); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + // Allocate input vectors h_A and h_B in host memory + h_A = (float *)malloc(size); + + if (h_A == 0) + { + Cleanup(false); + } + + h_B = (float *)malloc(size); + + if (h_B == 0) + { + Cleanup(false); + } + + h_C = (float *)malloc(size); + + if (h_C == 0) + { + Cleanup(false); + } + + // Initialize input vectors + RandomInit(h_A, N); + RandomInit(h_B, N); + + // Allocate vectors in device memory + error = cuMemAlloc(&d_A, size); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + error = cuMemAlloc(&d_B, size); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + error = cuMemAlloc(&d_C, size); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + // Copy vectors from host memory to device memory + error = cuMemcpyHtoD(d_A, h_A, size); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + error = cuMemcpyHtoD(d_B, h_B, size); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + +#if 1 + + if (1) + { + // This is the new CUDA 4.0 API for Kernel Parameter Passing and Kernel Launch (simpler method) + + // Grid/Block configuration + int threadsPerBlock = 256; + int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; + + void *args[] = { &d_A, &d_B, &d_C, &N }; + + // Launch the CUDA kernel + error = cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1, + threadsPerBlock, 1, 1, + 0, + NULL, args, NULL); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + } + else + { + // This is the new CUDA 4.0 API for Kernel Parameter Passing and Kernel Launch (advanced method) + int offset = 0; + void *argBuffer[16]; + *((CUdeviceptr *)&argBuffer[offset]) = d_A; + offset += sizeof(d_A); + *((CUdeviceptr *)&argBuffer[offset]) = d_B; + offset += sizeof(d_B); + *((CUdeviceptr *)&argBuffer[offset]) = d_C; + offset += sizeof(d_C); + *((int *)&argBuffer[offset]) = N; + offset += sizeof(N); + + // Grid/Block configuration + int threadsPerBlock = 256; + int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; + + // Launch the CUDA kernel + error = cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1, + threadsPerBlock, 1, 1, + 0, + NULL, NULL, argBuffer); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + } + +#else + { + char argBuffer[256]; + + // pass in launch parameters (not actually de-referencing CUdeviceptr). CUdeviceptr is + // storing the value of the parameters + *((CUdeviceptr *)&argBuffer[offset]) = d_A; + offset += sizeof(d_A); + *((CUdeviceptr *)&argBuffer[offset]) = d_B; + offset += sizeof(d_B); + *((CUdeviceptr *)&argBuffer[offset]) = d_C; + offset += sizeof(d_C); + *((int *)&argBuffer[offset]) = N; + offset += sizeof(N); + + void *kernel_launch_config[5] = + { + CU_LAUNCH_PARAM_BUFFER_POINTER, argBuffer, + CU_LAUNCH_PARAM_BUFFER_SIZE, &offset, + CU_LAUNCH_PARAM_END + }; + + // Grid/Block configuration + int threadsPerBlock = 256; + int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; + + // Launch the CUDA kernel + error = cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1, + threadsPerBlock, 1, 1, + 0, 0, + NULL, (void **)&kernel_launch_config); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + } +#endif + +#ifdef _DEBUG + error = cuCtxSynchronize(); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + +#endif + + // Copy result from device memory to host memory + // h_C contains the result in host memory + error = cuMemcpyDtoH(h_C, d_C, size); + + if (error != CUDA_SUCCESS) + { + Cleanup(false); + } + + // Verify result + int i; + + for (i = 0; i < N; ++i) + { + float sum = h_A[i] + h_B[i]; + + if (fabs(h_C[i] - sum) > 1e-7f) + { + break; + } + } + + printf("%s\n", (i==N) ? "Result = PASS" : "Result = FAIL"); + + exit((i==N) ? EXIT_SUCCESS : EXIT_FAILURE); +} + +CUresult CleanupNoFailure() +{ + CUresult error; + + // Free device memory + if (d_A) + { + error = cuMemFree(d_A); + } + + if (d_B) + { + error = cuMemFree(d_B); + } + + if (d_C) + { + error = cuMemFree(d_C); + } + + // Free host memory + if (h_A) + { + free(h_A); + } + + if (h_B) + { + free(h_B); + } + + if (h_C) + { + free(h_C); + } + + error = cuCtxDestroy(cuContext); + + return error; +} + +void Cleanup(bool noError) +{ + CUresult error; + error = CleanupNoFailure(); + + if (!noError || error != CUDA_SUCCESS) + { + printf("Function call failed\nFAILED\n"); + exit(EXIT_FAILURE); + } + + if (!noprompt) + { + printf("\nPress ENTER to exit...\n"); + fflush(stdout); + fflush(stderr); + getchar(); + } +} + + +// Allocates an array with random float entries. +void RandomInit(float *data, int n) +{ + for (int i = 0; i < n; ++i) + { + data[i] = rand() / (float)RAND_MAX; + } +} + +bool inline +findModulePath(const char *module_file, string &module_path, char **argv, string &ptx_source) +{ + char *actual_path = sdkFindFilePath(module_file, argv[0]); + + if (actual_path) + { + module_path = actual_path; + } + else + { + printf("> findModulePath file not found: <%s> \n", module_file); + return false; + } + + if (module_path.empty()) + { + printf("> findModulePath could not find file: <%s> \n", module_file); + return false; + } + else + { + printf("> findModulePath found file at <%s>\n", module_path.c_str()); + + if (module_path.rfind(".ptx") != string::npos) + { + FILE *fp = fopen(module_path.c_str(), "rb"); + fseek(fp, 0, SEEK_END); + int file_size = ftell(fp); + char *buf = new char[file_size+1]; + fseek(fp, 0, SEEK_SET); + fread(buf, sizeof(char), file_size, fp); + fclose(fp); + buf[file_size] = '\0'; + ptx_source = buf; + delete[] buf; + } + + return true; + } +} + +// Parse program arguments +void ParseArguments(int argc, char **argv) +{ + for (int i = 0; i < argc; ++i) + { + if (strcmp(argv[i], "--noprompt") == 0 || + strcmp(argv[i], "-noprompt") == 0) + { + noprompt = true; + break; + } + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/test/vectorAdd_kernel.cu Sat Feb 11 10:55:36 2017 +0900 @@ -0,0 +1,27 @@ +/* + * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. + * + * Please refer to the NVIDIA end user license agreement (EULA) associated + * with this source code for terms and conditions that govern your use of + * this software. Any use, reproduction, disclosure, or distribution of + * this software and related documentation outside the terms of the EULA + * is strictly prohibited. + * + */ + +/* Vector addition: C = A + B. + * + * This sample is a very basic sample that implements element by element + * vector addition. It is the same as the sample illustrating Chapter 3 + * of the programming guide with some additions like error checking. + * + */ + +// Device code +extern "C" __global__ void VecAdd_kernel(const float *A, const float *B, float *C, int N) +{ + int i = blockDim.x * blockIdx.x + threadIdx.x; + + if (i < N) + C[i] = A[i] + B[i]; +}