Mercurial > hg > Gears > GearsAgda
changeset 658:be2fd2884eef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Nov 2021 15:53:27 +0900 |
parents | f7090788789b |
children | afcccfaea264 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 9 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Nov 21 14:40:55 2021 +0900 +++ b/hoareBinaryTree.agda Sun Nov 21 15:53:27 2021 +0900 @@ -104,10 +104,7 @@ data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where s-nil : {tree : bt A} → stackInvariant key tree tree [] - s-right0 : {tree tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } - → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) (node key₁ v1 tree₁ tree) [] → stackInvariant key tree tree (tree ∷ []) - s-left0 : {tree₁ tree : bt A} → {key₁ : ℕ } → {v1 : A } - → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) (node key₁ v1 tree₁ tree) [] → stackInvariant key tree₁ tree₁ (tree₁ ∷ []) + s-single : {tree : bt A} → stackInvariant key tree tree [] → stackInvariant key tree tree (tree ∷ []) s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) → stackInvariant key tree tree0 (tree ∷ st) s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} @@ -123,8 +120,7 @@ replFromStack : {n : Level} {A : Set n} {key : ℕ} {top orig : bt A} → {stack : List (bt A)} → stackInvariant key top orig stack → bt A replFromStack (s-nil {tree} ) = tree -replFromStack (s-right0 {tree} _ _ ) = tree -replFromStack (s-left0 {tree} _ _ ) = tree +replFromStack (s-single {tree} _) = tree replFromStack (s-right {tree} x _ st) = tree replFromStack (s-left {tree} x _ st) = tree @@ -151,7 +147,7 @@ stack-last (x ∷ s) = stack-last s stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) -stackInvariantTest1 = s-right (add< 2) (s-right0 (add< 2) s-nil) (λ ()) +stackInvariantTest1 = s-right (add< 2) (s-single s-nil) (λ ()) si-nil : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → (si : stackInvariant key tree tree0 []) → tree ≡ tree0 si-nil s-nil = refl @@ -159,16 +155,14 @@ si-property1 : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack → stack-top stack ≡ just tree si-property1 key t t0 [] ne (s-nil ) = ⊥-elim ( ne refl ) -si-property1 key t t0 (t ∷ []) ne (s-right0 _ _) = refl -si-property1 key t t0 (t ∷ []) ne (s-left0 _ _) = refl +si-property1 key t t0 (t ∷ []) ne (s-single _) = refl si-property1 key t t0 (t ∷ st) _ (s-right _ _ si) = refl si-property1 key t t0 (t ∷ st) _ (s-left _ _ si) = refl si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack → stack-last stack ≡ just tree0 si-property-last key t t0 [] ne s-nil = ⊥-elim ( ne refl ) -si-property-last key t t0 (t ∷ []) _ (s-left0 _ _) = {!!} -si-property-last key t t0 (t ∷ []) _ (s-right0 _ _) = {!!} +si-property-last key t t0 (t ∷ []) _ (s-single _) = {!!} si-property-last key t t0 (t ∷ []) _ (s-right _ _ ne) = ⊥-elim ( ne refl ) si-property-last key t t0 (t ∷ []) _ (s-left _ _ ne) = ⊥-elim ( ne refl ) si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si _) with si-property1 key _ _ (x ∷ st) (λ ()) si @@ -191,8 +185,7 @@ stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A)) → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub stackTreeInvariant {_} {A} key sub tree [] ti s-nil = ti -stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-left0 _ _) = {!!} -stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-right0 _ _) = {!!} +stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single _ ) = {!!} stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si _) = ti-right (si1 si) where si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub ) si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si @@ -248,7 +241,7 @@ ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) findP1 a (x ∷ st) si = s-left a si (λ ()) - findP1 a [] s-nil = ? -- s-left0 a s-nil + findP1 a [] s-nil = {!!} --s-single s-nil findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) {!!} ⟫ depth-2< replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) @@ -283,6 +276,7 @@ replaceP key value {tree0} {tree} {tree-st} repl [] Pre next exit with proj1 (proj2 Pre) ... | t = {!!} replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ []) Pre next exit with proj1 (proj2 Pre) +... | s-single _ = {!!} ... | s-right x t _ = {!!} ... | s-left x t _ = {!!} replaceP key value {tree0} {tree} {tree-st} repl (leaf ∷ leaf ∷ st) Pre next exit with proj1 (proj2 Pre) @@ -301,6 +295,7 @@ ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right ) st {!!} ≤-refl ... | tri≈ ¬a b ¬c = next key value (node key value left right ) st {!!} ≤-refl where -- this case won't happen ... | tri< a ¬b ¬c with proj1 (proj2 Pre) +... | s-single si1 = {!!} ... | s-right x si1 _ = {!!} ... | s-left x si1 _ = next key value (node key₁ value₁ repl right ) st ⟪ proj1 Pre , ⟪ si1 , r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl -- = next key value (node key₁ value₁ repl right ) st ⟪ proj1 Pre , ⟪ repl2 (proj1 (proj2 Pre)) , r-left a {!!} ⟫ ⟫ ≤-refl where