Mercurial > hg > Gears > GearsAgda
changeset 649:cc62eb4758b0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 20 Nov 2021 06:36:02 +0900 |
parents | 6c3d50b30bea |
children | 11388cab162f |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 29 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Fri Nov 19 20:07:09 2021 +0900 +++ b/hoareBinaryTree.agda Sat Nov 20 06:36:02 2021 +0900 @@ -190,6 +190,11 @@ depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i ) depth-2< {i} {j} = s≤s (m≤n⊔m _ i) +depth-3< : {i : ℕ } → suc i ≤ suc (suc i) +depth-3< {zero} = s≤s ( z≤n ) +depth-3< {suc i} = s≤s (depth-3< {i} ) + + treeLeftDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A ) → treeInvariant (node k v1 tree tree₁) → treeInvariant tree @@ -229,6 +234,15 @@ replaceTree1 k v1 value (t-left x t) = t-left x t replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁ +open import Relation.Binary.Definitions + +nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ +nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x +lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ +lemma3 refl () +lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ +lemma5 (s≤s z≤n) () + replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key ) → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t @@ -247,30 +261,30 @@ exit tree0 repl ⟪ proj1 Pre , subst (λ k → replacedTree key value k repl ) (repl4 (proj1 (proj2 Pre))) (proj2 (proj2 Pre)) ⟫ where repl4 : stackInvariant key tree tree0 (leaf ∷ []) → tree ≡ tree0 repl4 (s-single .leaf) = refl -replaceP key value {tree0} {tree} repl (leaf ∷ leaf ∷ st) Pre next exit = {!!} -- can't happen -replaceP key value {tree0} {tree} repl (leaf ∷ node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = next key value (node key₁ value₁ left repl ) st {!!} {!!} -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} {!!} -... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right) st {!!} {!!} +replaceP key value {tree0} {tree} repl (leaf ∷ leaf ∷ st) Pre next exit = ⊥-elim ( repl3 (proj1 (proj2 Pre))) where -- can't happen + repl3 : stackInvariant key tree tree0 (leaf ∷ leaf ∷ st) → ⊥ + repl3 (s-right x ()) + repl3 (s-left x ()) +replaceP {_} {_} {A} key value {tree0} {tree} repl (leaf ∷ node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ +... | tri< a ¬b ¬c = next key value (node key₁ value₁ left repl ) (node key₁ value₁ left tree ∷ st) + ⟪ proj1 Pre , ⟪ repl5 (proj1 (proj2 Pre)) , r-right a (proj2 (proj2 Pre)) ⟫ ⟫ {!!} where + repl5 : stackInvariant key tree tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ left tree) tree0 (node key₁ value₁ left tree ∷ st ) + repl5 (s-right x si) with si-property1 _ _ _ _ si + ... | refl = ⊥-elim ( nat-≤> a {!!} ) + repl5 (s-left x si) with si-property1 _ _ _ _ si + ... | refl = {!!} -- suc key ≤ key₁ , suc key ≤ key₁ +... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} depth-3< +... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right) st {!!} depth-3< replaceP key value {tree0} {tree} repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right ) st {!!} ≤-refl ... | tri≈ ¬a b ¬c = next key value (node key value left right ) st {!!} ≤-refl where -- this case won't happen -... | tri< a ¬b ¬c = next key value (node key₁ value₁ left repl) st ⟪ proj1 Pre , ⟪ {!!} , r-right a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl where +... | tri< a ¬b ¬c = next key value (node key₁ value₁ left repl) st ⟪ proj1 Pre , ⟪ repl2 (proj1 (proj2 Pre)) , r-right a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl where repl2 : stackInvariant key tree tree0 (node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ left tree) tree0 st repl2 (s-single .(node key₁ value₁ left right)) = {!!} repl2 (s-right _ si) = {!!} repl2 (s-left _ si) = {!!} -open import Relation.Binary.Definitions - -nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ -nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x -lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ -lemma3 refl () -lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ -lemma5 (s≤s z≤n) () - TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ) → (r : Index) → (p : Invraiant r) → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t