Mercurial > hg > Gears > GearsAgda
changeset 695:ce6cd128595d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Dec 2021 08:14:32 +0900 |
parents | da42fe4eda54 |
children | 578f29a76857 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 49 insertions(+), 46 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Thu Dec 02 15:03:21 2021 +0900 +++ b/hoareBinaryTree.agda Fri Dec 03 08:14:32 2021 +0900 @@ -284,7 +284,7 @@ → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value (child-replaced key tree) tree1 → t) → t replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) - (subst (λ j → replacedTree k v1 j (node k v1 t t₁) ) repl00 r-node) where -- (child-replaced k (node k value t t₁)) + (subst (λ j → replacedTree k v1 j (node k v1 t t₁) ) repl00 r-node) where repl00 : node k value t t₁ ≡ child-replaced k (node k value t t₁) repl00 with <-cmp k k ... | tri< a ¬b ¬c = ⊥-elim (¬b refl) @@ -560,67 +560,70 @@ record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where field tree0 : bt A - ti : treeInvariant tree0 + ti : treeInvariant tree si : stackInvariant key tree tree0 stack ci : C tree stack -- data continuation -findPP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) - → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t -findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre +findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) + → findPR key tree stack (λ _ _ → Lift n ⊤) + → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (λ _ _ → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (λ _ _ → Lift n ⊤) + → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t +findPP key leaf st Pre _ exit = exit leaf st Pre (case1 refl) findPP key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ -findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P -findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = - next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where - tree0 = findPR.tree0 Pre - findPP2 : (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ st) - findPP2 = {!!} - findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) - findPP1 = depth-1< -findPP key n@(node key₁ v1 tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) - findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) - findPP2 = depth-2< +findPP key n st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) +findPP {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st) + record { tree0 = findPR.tree0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre) ; si = findP1 a st (findPR.si Pre) ; ci = lift tt } depth-1< where + findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) + (findPR.tree0 Pre) st → stackInvariant key tree (findPR.tree0 Pre) (tree ∷ st) + findP1 a (x ∷ st) si = s-left a si +findPP key n@(node key₁ v1 tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) + record { tree0 = findPR.tree0 Pre ; ti = treeRightDown tree tree₁ (findPR.ti Pre) ; si = s-right c (findPR.si Pre) ; ci = lift tt } depth-2< insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t -insertTreePP {n} {m} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} - $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) - $ λ t s _ P → replaceNodeP key value t {!!} {!!} - $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) - {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } - (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , {!!} ⟫ ⟫ - $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!} - (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit +insertTreePP {n} {m} {A} {t} tree key value P0 exit = + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ _ _ → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫ + record { tree0 = tree ; ti = P0 ; si = s-single ; ci = lift tt } + $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) + $ λ t s P C → replaceNodeP key value t C (findPR.ti P) + $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A ) + {λ p → replacePR key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) (λ _ _ _ → Lift n ⊤ ) } + (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = tree ; ti = P0 ; si = {!!} ; ri = R ; ci = lift tt } + $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) P1 + (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit -record findPC {n : Level} {A : Set n} (key1 : ℕ) (value1 : A) (tree : bt A ) (stack : List (bt A)) : Set n where +record findPC {n : Level} {A : Set n} (key1 : ℕ) (tree : bt A ) (stack : List (bt A)) : Set n where field tree1 : bt A - ci : replacedTree key1 value1 tree tree1 + value : A + ci : replacedTree key1 value tree tree1 -findPPC : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) - → (Pre : findPR key tree stack (findPC key value)) - → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t -findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre -findPPC key value (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ -findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P -findPPC {_} {_} {A} key value n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = - next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!} -findPPC key value n st P next exit | tri> ¬a ¬b c = {!!} +findPPC : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) + → findPR key tree stack (findPC key ) + → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC key ) → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC key ) + → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t +findPPC key leaf st Pre _ exit = exit leaf st Pre (case1 refl) +findPPC key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ +findPPC key n st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) +findPPC {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st) + record { tree0 = findPR.tree0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre) ; si = findP1 a st (findPR.si Pre) ; ci = {!!} } depth-1< where + findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) + (findPR.tree0 Pre) st → stackInvariant key tree (findPR.tree0 Pre) (tree ∷ st) + findP1 a (x ∷ st) si = s-left a si +findPPC key n@(node key₁ v1 tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) + record { tree0 = findPR.tree0 Pre ; ti = treeRightDown tree tree₁ (findPR.ti Pre) ; si = s-right c (findPR.si Pre) ; ci = {!!} } depth-2< containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ containsTree {n} {m} {A} {t} tree tree1 key value P RT = TerminatingLoopS (bt A ∧ List (bt A) ) - {λ p → findPR key (proj1 p) (proj2 p) (findPC key value ) } (λ p → bt-depth (proj1 p)) -- findPR key tree1 [] (findPC key value) + {λ p → findPR key (proj1 p) (proj2 p) (findPC key ) } (λ p → bt-depth (proj1 p)) -- findPR key tree1 [] (findPC key value) ⟪ tree1 , [] ⟫ record { tree0 = tree ; ti = {!!} ; si = {!!} ; ci = record { tree1 = tree ; ci = RT } } - $ λ p P loop → findPPC key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) - $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where - lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value - lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci (findPR.ci P2)) (findPR.si P2) found? where + $ λ p P loop → findPPC key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) + $ λ t1 s1 P2 found? → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where + lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key )) → top-value t1 ≡ just value + lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci {!!} ) (findPR.si P2) found? where lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) → replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value lemma7 = {!!}