Mercurial > hg > Gears > GearsAgda
changeset 694:da42fe4eda54
complete insertTreeP
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Dec 2021 15:03:21 +0900 |
parents | 49dd82f49fa1 |
children | ce6cd128595d |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 16 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Thu Dec 02 00:27:11 2021 +0900 +++ b/hoareBinaryTree.agda Thu Dec 02 15:03:21 2021 +0900 @@ -281,9 +281,15 @@ replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key ) - → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t -replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf -replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) r-node + → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value (child-replaced key tree) tree1 → t) → t +replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf +replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) + (subst (λ j → replacedTree k v1 j (node k v1 t t₁) ) repl00 r-node) where -- (child-replaced k (node k value t t₁)) + repl00 : node k value t t₁ ≡ child-replaced k (node k value t t₁) + repl00 with <-cmp k k + ... | tri< a ¬b ¬c = ⊥-elim (¬b refl) + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b c = ⊥-elim (¬b refl) replaceP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {tree : bt A} ( repl : bt A) @@ -535,10 +541,15 @@ $ λ t s P C → replaceNodeP key value t C (proj1 P) $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A ) {λ p → replacePR key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) (λ _ _ _ → Lift n ⊤ ) } - (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = tree ; ti = P0 ; si = proj2 P ; ri = {!!} ; ci = lift tt } -- replacedTree key value (child-replaced key t) t1 + (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = tree ; ti = P0 ; si = proj2 P ; ri = R ; ci = lift tt } -- replacedTree key value (child-replaced key t) t1 $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) P1 (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit +insertTestP1 = insertTreeP leaf 1 1 _ (λ _ x _ → x ) +insertTestP2 = insertTreeP insertTestP1 2 1 _ (λ _ x _ → x ) +insertTestP3 = insertTreeP insertTestP2 3 2 _ (λ _ x _ → x ) +insertTestP4 = insertTreeP insertTestP3 2 2 _ (λ _ x _ → x ) + top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A top-value leaf = nothing top-value (node key value tree tree₁) = just value @@ -580,7 +591,7 @@ $ λ t s _ P → replaceNodeP key value t {!!} {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } - (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ + (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , {!!} ⟫ ⟫ $ λ p P1 loop → replaceP key value (proj2 (proj2 p)) (proj1 p) {!!} (λ key value repl1 stack P2 lt → loop ⟪ stack , ⟪ {!!} , repl1 ⟫ ⟫ {!!} lt ) exit